Back to Build/check report for BioC 3.17
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2023-01-02 09:00:33 -0500 (Mon, 02 Jan 2023).

HostnameOSArch (*)R versionInstalled pkgs
palomino5Windows Server 2022 Datacenterx64R Under development (unstable) (2022-12-25 r83502 ucrt) -- "Unsuffered Consequences" 4165
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for HPiP on palomino5


To the developers/maintainers of the HPiP package:
Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 912/2158HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.5.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2022-12-28 11:00:06 -0500 (Wed, 28 Dec 2022)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: master
git_last_commit: 5ea7a66
git_last_commit_date: 2022-11-01 11:25:39 -0500 (Tue, 01 Nov 2022)
palomino5Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  

Summary

Package: HPiP
Version: 1.5.0
Command: F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings HPiP_1.5.0.tar.gz
StartedAt: 2022-12-29 00:32:58 -0500 (Thu, 29 Dec 2022)
EndedAt: 2022-12-29 00:36:51 -0500 (Thu, 29 Dec 2022)
EllapsedTime: 232.7 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings HPiP_1.5.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.17-bioc-rtools43/meat/HPiP.Rcheck'
* using R Under development (unstable) (2022-12-25 r83502 ucrt)
* using platform: x86_64-w64-mingw32 (64-bit)
* R was compiled by
    gcc.exe (GCC) 10.4.0
    GNU Fortran (GCC) 10.4.0
* running under: Windows Server x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.5.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
var_imp       26.88   0.82   27.72
FSmethod      25.22   1.40   26.81
corr_plot     25.67   0.75   26.42
pred_ensembel 11.61   0.40    8.56
enrichfindP    0.37   0.05    7.53
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  'F:/biocbuild/bbs-3.17-bioc-rtools43/meat/HPiP.Rcheck/00check.log'
for details.



Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.17-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2022-12-25 r83502 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 97.899732 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.741587 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 107.428120 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.166035 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 107.934203 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 112.177079 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 107.420928 
iter  10 value 94.377441
final  value 94.354396 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.839953 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 117.068292 
final  value 94.354396 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.689935 
final  value 94.354396 
converged
Fitting Repeat 1 

# weights:  507
initial  value 113.117914 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.491784 
final  value 94.354396 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.279929 
final  value 93.943255 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.936809 
iter  10 value 87.368087
iter  20 value 85.400844
iter  30 value 85.285353
iter  30 value 85.285353
iter  30 value 85.285353
final  value 85.285353 
converged
Fitting Repeat 5 

# weights:  507
initial  value 93.579349 
iter  10 value 92.195776
iter  20 value 92.188098
final  value 92.188059 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.562732 
iter  10 value 94.466202
iter  20 value 94.391837
iter  30 value 94.377647
iter  40 value 83.130619
iter  50 value 81.428594
iter  60 value 80.386714
iter  70 value 78.946960
iter  80 value 78.347203
iter  90 value 78.264355
iter 100 value 78.261307
final  value 78.261307 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 107.711590 
iter  10 value 94.482107
iter  20 value 92.975123
iter  30 value 85.529085
iter  40 value 82.981046
iter  50 value 80.948048
iter  60 value 80.562862
iter  70 value 79.350671
iter  80 value 78.264965
iter  90 value 78.261013
final  value 78.260981 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.081718 
iter  10 value 92.917314
iter  20 value 89.700761
iter  30 value 80.530184
iter  40 value 79.307129
iter  50 value 79.034524
iter  60 value 78.944282
iter  70 value 78.919907
iter  80 value 78.164993
iter  90 value 77.940291
iter 100 value 77.908344
final  value 77.908344 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 99.668659 
iter  10 value 94.488922
iter  20 value 94.425146
iter  30 value 92.339461
iter  40 value 91.594721
iter  50 value 91.101870
iter  60 value 90.380919
iter  70 value 90.366558
iter  80 value 90.363014
iter  90 value 90.325703
iter 100 value 90.318427
final  value 90.318427 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 98.423275 
iter  10 value 94.447101
iter  20 value 90.797210
iter  30 value 84.535616
iter  40 value 83.802487
iter  50 value 83.497792
iter  60 value 82.595252
iter  70 value 82.084881
iter  80 value 79.529078
iter  90 value 78.410796
iter 100 value 78.262413
final  value 78.262413 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 109.267699 
iter  10 value 94.220664
iter  20 value 93.135484
iter  30 value 90.943858
iter  40 value 90.618010
iter  50 value 87.617880
iter  60 value 82.365250
iter  70 value 78.473228
iter  80 value 77.176313
iter  90 value 76.808549
iter 100 value 76.684145
final  value 76.684145 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.583363 
iter  10 value 95.193807
iter  20 value 93.166492
iter  30 value 91.418243
iter  40 value 82.637256
iter  50 value 81.355349
iter  60 value 80.623414
iter  70 value 79.354674
iter  80 value 78.923523
iter  90 value 78.216684
iter 100 value 77.363554
final  value 77.363554 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 114.502951 
iter  10 value 94.473879
iter  20 value 86.533025
iter  30 value 85.049701
iter  40 value 84.673123
iter  50 value 83.942735
iter  60 value 80.093104
iter  70 value 79.110359
iter  80 value 77.784077
iter  90 value 76.614622
iter 100 value 76.406488
final  value 76.406488 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 101.983384 
iter  10 value 94.483985
iter  20 value 87.464482
iter  30 value 85.693499
iter  40 value 82.309485
iter  50 value 79.970016
iter  60 value 79.530175
iter  70 value 77.989957
iter  80 value 76.404161
iter  90 value 76.194687
iter 100 value 76.145401
final  value 76.145401 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 108.923883 
iter  10 value 94.492745
iter  20 value 85.317169
iter  30 value 82.942170
iter  40 value 82.490157
iter  50 value 82.102987
iter  60 value 81.682499
iter  70 value 79.105404
iter  80 value 77.509732
iter  90 value 77.341298
iter 100 value 76.844227
final  value 76.844227 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 109.790244 
iter  10 value 94.622135
iter  20 value 94.481168
iter  30 value 94.198151
iter  40 value 83.768129
iter  50 value 82.779060
iter  60 value 82.301421
iter  70 value 80.624053
iter  80 value 79.166064
iter  90 value 78.304338
iter 100 value 77.816598
final  value 77.816598 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.807074 
iter  10 value 92.951885
iter  20 value 83.490303
iter  30 value 81.278540
iter  40 value 79.761992
iter  50 value 79.243597
iter  60 value 77.641749
iter  70 value 77.387400
iter  80 value 77.088734
iter  90 value 76.742857
iter 100 value 76.456643
final  value 76.456643 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 121.675918 
iter  10 value 94.385380
iter  20 value 88.242222
iter  30 value 83.079086
iter  40 value 82.106844
iter  50 value 80.799351
iter  60 value 78.919921
iter  70 value 78.134182
iter  80 value 77.789574
iter  90 value 77.519940
iter 100 value 77.305426
final  value 77.305426 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 124.640347 
iter  10 value 94.726118
iter  20 value 94.545086
iter  30 value 83.441866
iter  40 value 82.762761
iter  50 value 80.439478
iter  60 value 78.746980
iter  70 value 77.519824
iter  80 value 77.323061
iter  90 value 77.001014
iter 100 value 76.892256
final  value 76.892256 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.860898 
iter  10 value 94.562358
iter  20 value 87.011671
iter  30 value 82.285270
iter  40 value 79.172501
iter  50 value 77.500296
iter  60 value 77.119467
iter  70 value 76.728636
iter  80 value 76.673133
iter  90 value 76.441585
iter 100 value 76.203145
final  value 76.203145 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.109947 
final  value 94.485857 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.281361 
iter  10 value 94.485817
iter  20 value 94.454994
iter  30 value 82.514693
iter  40 value 80.864534
iter  50 value 80.836185
iter  60 value 80.834112
iter  70 value 80.633248
iter  80 value 80.619570
final  value 80.619272 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.903033 
iter  10 value 94.486138
iter  20 value 94.484244
iter  20 value 94.484244
iter  20 value 94.484244
final  value 94.484244 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.569262 
final  value 94.485942 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.767989 
final  value 94.485998 
converged
Fitting Repeat 1 

# weights:  305
initial  value 92.746701 
iter  10 value 89.994619
iter  20 value 89.960830
iter  30 value 89.957415
iter  40 value 89.858300
iter  50 value 89.855459
final  value 89.854923 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.567737 
iter  10 value 94.488898
iter  20 value 94.483545
iter  30 value 92.257618
iter  40 value 84.594606
iter  50 value 84.507038
final  value 84.352898 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.312984 
iter  10 value 94.433661
iter  20 value 93.607445
final  value 85.513842 
converged
Fitting Repeat 4 

# weights:  305
initial  value 111.024960 
iter  10 value 94.489139
iter  20 value 94.484352
iter  30 value 94.120158
iter  40 value 84.099825
iter  50 value 82.583528
iter  60 value 82.373599
iter  70 value 80.255925
iter  80 value 80.250041
final  value 80.249389 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.948753 
iter  10 value 94.432562
iter  20 value 94.419409
iter  30 value 87.604475
iter  40 value 86.079831
iter  50 value 86.078113
iter  50 value 86.078113
final  value 86.078113 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.668037 
iter  10 value 94.487234
iter  20 value 92.562536
iter  30 value 87.133886
iter  40 value 87.026187
iter  50 value 87.002720
iter  60 value 86.983339
iter  70 value 86.966748
iter  80 value 85.994619
iter  90 value 80.681117
iter 100 value 78.693002
final  value 78.693002 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 96.862632 
iter  10 value 92.221958
iter  20 value 92.146553
iter  30 value 92.140389
iter  40 value 89.541031
iter  50 value 81.654587
iter  60 value 80.433475
iter  70 value 79.985678
iter  80 value 78.171400
iter  90 value 75.660745
iter 100 value 74.713813
final  value 74.713813 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 100.832399 
iter  10 value 94.391357
iter  20 value 94.381921
iter  30 value 94.273984
iter  40 value 81.835016
iter  50 value 81.629072
iter  60 value 81.460482
iter  70 value 81.455302
iter  80 value 78.154213
iter  90 value 77.539450
iter 100 value 77.345610
final  value 77.345610 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 108.071242 
iter  10 value 94.492008
iter  20 value 94.301183
final  value 87.540491 
converged
Fitting Repeat 5 

# weights:  507
initial  value 117.917880 
iter  10 value 94.491869
iter  20 value 85.863989
iter  30 value 85.342485
iter  40 value 85.334955
iter  50 value 85.334733
final  value 85.334458 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.396279 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.234757 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.841216 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.462207 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 93.102023 
iter  10 value 92.501715
final  value 92.501299 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.364118 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 113.821452 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 105.146405 
iter  10 value 89.772877
final  value 89.772792 
converged
Fitting Repeat 4 

# weights:  305
initial  value 116.169995 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 111.269346 
final  value 93.867391 
converged
Fitting Repeat 1 

# weights:  507
initial  value 114.024886 
iter  10 value 93.867395
final  value 93.867391 
converged
Fitting Repeat 2 

# weights:  507
initial  value 120.716641 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.895678 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 126.671145 
iter  10 value 93.867391
iter  10 value 93.867391
iter  10 value 93.867391
final  value 93.867391 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.841324 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.209877 
iter  10 value 94.018243
iter  20 value 90.274551
iter  30 value 87.450795
iter  40 value 82.900235
iter  50 value 81.990996
iter  60 value 81.066338
iter  70 value 80.982699
iter  80 value 80.642864
iter  90 value 80.549616
final  value 80.546352 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.015072 
iter  10 value 94.057010
iter  20 value 93.359913
iter  30 value 91.082838
iter  40 value 90.541560
iter  50 value 88.904827
iter  60 value 81.083345
iter  70 value 80.883903
iter  80 value 80.818319
iter  90 value 80.536128
iter 100 value 80.303438
final  value 80.303438 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 95.956037 
iter  10 value 94.061640
iter  20 value 91.312523
iter  30 value 83.706450
iter  40 value 82.339981
iter  50 value 82.245947
iter  60 value 81.996222
iter  70 value 81.847993
iter  80 value 81.765195
final  value 81.765192 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.873127 
iter  10 value 93.301371
iter  20 value 84.540519
iter  30 value 83.137466
iter  40 value 82.531742
iter  50 value 81.957633
iter  60 value 81.907109
iter  70 value 81.823392
iter  80 value 81.765354
final  value 81.765192 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.021043 
iter  10 value 94.055174
iter  20 value 84.965206
iter  30 value 83.954743
iter  40 value 83.046933
iter  50 value 82.452902
iter  60 value 82.410656
iter  70 value 82.358876
iter  80 value 82.254516
iter  90 value 82.124629
iter 100 value 82.034019
final  value 82.034019 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.587484 
iter  10 value 94.061872
iter  20 value 89.404942
iter  30 value 84.166896
iter  40 value 82.712943
iter  50 value 81.616455
iter  60 value 80.388356
iter  70 value 79.956767
iter  80 value 79.675503
iter  90 value 79.271490
iter 100 value 79.022547
final  value 79.022547 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 117.182248 
iter  10 value 93.933048
iter  20 value 86.887485
iter  30 value 84.900541
iter  40 value 83.109669
iter  50 value 82.046726
iter  60 value 81.823543
iter  70 value 81.437561
iter  80 value 80.672161
iter  90 value 79.771342
iter 100 value 79.607569
final  value 79.607569 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 104.861202 
iter  10 value 94.084871
iter  20 value 93.526500
iter  30 value 89.751945
iter  40 value 83.887963
iter  50 value 83.444264
iter  60 value 83.009833
iter  70 value 82.882398
iter  80 value 82.718103
iter  90 value 81.634345
iter 100 value 81.038004
final  value 81.038004 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.252071 
iter  10 value 93.924276
iter  20 value 90.979779
iter  30 value 87.178695
iter  40 value 82.279797
iter  50 value 81.692295
iter  60 value 81.335550
iter  70 value 81.176478
iter  80 value 81.124186
iter  90 value 80.659071
iter 100 value 80.058966
final  value 80.058966 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 107.507888 
iter  10 value 94.084566
iter  20 value 93.975733
iter  30 value 93.289944
iter  40 value 87.518855
iter  50 value 84.752720
iter  60 value 81.978679
iter  70 value 81.337957
iter  80 value 80.985185
iter  90 value 80.450857
iter 100 value 80.069105
final  value 80.069105 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 109.998136 
iter  10 value 91.237022
iter  20 value 89.341567
iter  30 value 83.933424
iter  40 value 82.474745
iter  50 value 82.377075
iter  60 value 82.156188
iter  70 value 80.860527
iter  80 value 80.120007
iter  90 value 80.018657
iter 100 value 79.864357
final  value 79.864357 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 115.481563 
iter  10 value 94.116585
iter  20 value 92.296803
iter  30 value 87.665005
iter  40 value 85.160613
iter  50 value 81.434595
iter  60 value 80.724422
iter  70 value 80.395094
iter  80 value 80.027571
iter  90 value 79.614383
iter 100 value 79.568049
final  value 79.568049 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 114.792040 
iter  10 value 94.285727
iter  20 value 85.518106
iter  30 value 83.495155
iter  40 value 82.378018
iter  50 value 80.716716
iter  60 value 80.142905
iter  70 value 79.932642
iter  80 value 79.560406
iter  90 value 79.367658
iter 100 value 79.233882
final  value 79.233882 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 116.037825 
iter  10 value 96.754547
iter  20 value 96.264209
iter  30 value 87.265206
iter  40 value 82.014200
iter  50 value 80.787767
iter  60 value 80.325794
iter  70 value 80.281648
iter  80 value 80.087206
iter  90 value 79.766508
iter 100 value 79.195647
final  value 79.195647 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.337756 
iter  10 value 94.321413
iter  20 value 87.253055
iter  30 value 84.641715
iter  40 value 83.984720
iter  50 value 82.323512
iter  60 value 81.519042
iter  70 value 81.349399
iter  80 value 80.918540
iter  90 value 80.278209
iter 100 value 79.559813
final  value 79.559813 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.167887 
final  value 94.054650 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.765686 
final  value 94.054434 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.922587 
final  value 94.054494 
converged
Fitting Repeat 4 

# weights:  103
initial  value 113.865515 
iter  10 value 93.869368
iter  20 value 93.814672
iter  30 value 90.218587
iter  40 value 89.924950
iter  50 value 89.625347
iter  60 value 89.625055
iter  70 value 89.624943
iter  80 value 88.381740
iter  80 value 88.381740
final  value 88.381740 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.289404 
final  value 94.054608 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.729980 
iter  10 value 94.057126
iter  20 value 93.599956
iter  30 value 83.275622
iter  40 value 82.563452
iter  50 value 82.558850
iter  60 value 82.558614
final  value 82.557105 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.809494 
iter  10 value 93.872280
iter  20 value 93.868298
iter  30 value 92.020868
iter  40 value 91.849886
iter  50 value 90.615857
final  value 90.615407 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.799405 
iter  10 value 94.057268
iter  20 value 93.769018
iter  30 value 83.381197
iter  40 value 83.307056
iter  50 value 83.277600
iter  60 value 82.523853
iter  70 value 79.884936
iter  80 value 79.881660
iter  90 value 79.880328
final  value 79.879276 
converged
Fitting Repeat 4 

# weights:  305
initial  value 106.494571 
iter  10 value 90.978672
iter  20 value 83.388397
iter  30 value 82.469174
iter  40 value 81.211151
iter  50 value 81.028335
iter  60 value 80.889140
iter  70 value 80.769366
iter  80 value 80.767532
iter  90 value 80.765335
iter 100 value 80.697922
final  value 80.697922 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.464231 
iter  10 value 94.058193
iter  20 value 94.025362
iter  30 value 89.497896
iter  40 value 89.495794
final  value 89.495777 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.387794 
iter  10 value 93.568668
iter  20 value 93.236877
iter  30 value 88.315618
iter  40 value 84.970610
iter  50 value 81.212098
iter  60 value 81.165840
iter  70 value 81.162109
final  value 81.162066 
converged
Fitting Repeat 2 

# weights:  507
initial  value 119.315281 
iter  10 value 93.874833
iter  20 value 93.869548
iter  30 value 93.869212
iter  40 value 93.850056
iter  50 value 84.913868
iter  60 value 82.943624
iter  70 value 82.548913
iter  80 value 82.336929
iter  90 value 80.272670
iter 100 value 80.012881
final  value 80.012881 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 100.991516 
iter  10 value 93.203952
iter  20 value 92.900825
iter  30 value 92.900062
iter  40 value 92.896305
iter  50 value 92.895368
iter  60 value 92.864686
iter  70 value 83.356495
iter  80 value 82.938721
iter  90 value 82.707278
iter 100 value 82.625745
final  value 82.625745 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 95.809736 
iter  10 value 94.051499
iter  20 value 87.798056
iter  30 value 82.978662
iter  40 value 81.719127
final  value 81.718727 
converged
Fitting Repeat 5 

# weights:  507
initial  value 117.935051 
iter  10 value 93.875880
iter  20 value 93.010176
iter  30 value 85.968280
iter  40 value 85.822209
iter  50 value 85.815538
iter  60 value 85.815461
final  value 85.815459 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.271002 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.039690 
iter  10 value 93.290807
iter  20 value 93.288893
final  value 93.288889 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.939774 
final  value 93.836066 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.687301 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.642387 
iter  10 value 88.679691
iter  20 value 84.102952
iter  30 value 82.585225
iter  40 value 80.829479
iter  50 value 80.323720
iter  60 value 80.321705
final  value 80.321695 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.785385 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.408636 
iter  10 value 93.547849
iter  20 value 88.104107
iter  30 value 84.512718
iter  40 value 84.503272
final  value 84.503042 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.504395 
final  value 93.836066 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.292950 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 111.149962 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 129.550106 
iter  10 value 86.803972
iter  20 value 84.611360
iter  30 value 84.228753
iter  40 value 84.187683
final  value 84.187625 
converged
Fitting Repeat 2 

# weights:  507
initial  value 110.924318 
iter  10 value 93.836066
iter  10 value 93.836066
iter  10 value 93.836066
final  value 93.836066 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.667034 
iter  10 value 94.035088
iter  10 value 94.035088
iter  10 value 94.035088
final  value 94.035088 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.148971 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 102.370554 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 109.155915 
iter  10 value 94.082599
iter  20 value 93.787436
iter  30 value 88.280868
iter  40 value 87.348310
iter  50 value 85.637191
iter  60 value 85.167047
iter  70 value 85.154142
iter  80 value 85.153296
final  value 85.152603 
converged
Fitting Repeat 2 

# weights:  103
initial  value 114.756319 
iter  10 value 94.060186
iter  20 value 93.934576
iter  30 value 87.675731
iter  40 value 86.232409
iter  50 value 85.517076
iter  60 value 85.180229
iter  70 value 85.153000
final  value 85.152603 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.136124 
iter  10 value 92.698670
iter  20 value 86.660345
iter  30 value 85.128560
iter  40 value 84.199704
iter  50 value 84.112682
iter  60 value 83.658140
iter  70 value 82.151252
iter  80 value 82.137259
final  value 82.137232 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.828988 
iter  10 value 93.885573
iter  20 value 90.987730
iter  30 value 89.807187
iter  40 value 83.619158
iter  50 value 82.996695
iter  60 value 82.682097
iter  70 value 82.591465
iter  80 value 82.490404
iter  90 value 82.365165
iter 100 value 82.294515
final  value 82.294515 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 102.246880 
iter  10 value 94.129097
iter  20 value 94.036729
iter  30 value 93.809369
iter  40 value 92.125843
iter  50 value 89.030711
iter  60 value 86.847976
iter  70 value 85.553027
iter  80 value 84.950640
iter  90 value 84.946124
final  value 84.946118 
converged
Fitting Repeat 1 

# weights:  305
initial  value 111.639288 
iter  10 value 94.067510
iter  20 value 92.761158
iter  30 value 86.546631
iter  40 value 84.519454
iter  50 value 83.810156
iter  60 value 83.653329
iter  70 value 83.316687
iter  80 value 83.261356
iter  90 value 82.060314
iter 100 value 81.537002
final  value 81.537002 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 106.459986 
iter  10 value 94.088029
iter  20 value 93.723302
iter  30 value 93.661389
iter  40 value 92.633179
iter  50 value 86.954155
iter  60 value 86.055538
iter  70 value 85.272271
iter  80 value 84.693452
iter  90 value 81.732111
iter 100 value 81.299157
final  value 81.299157 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.462139 
iter  10 value 94.038422
iter  20 value 88.125598
iter  30 value 85.252858
iter  40 value 84.242750
iter  50 value 82.879351
iter  60 value 82.533463
iter  70 value 81.511532
iter  80 value 80.810895
iter  90 value 80.657680
iter 100 value 80.587443
final  value 80.587443 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 115.568370 
iter  10 value 93.931705
iter  20 value 90.662013
iter  30 value 85.771944
iter  40 value 83.972268
iter  50 value 83.578631
iter  60 value 82.594576
iter  70 value 81.658437
iter  80 value 81.470367
iter  90 value 81.300231
iter 100 value 81.178458
final  value 81.178458 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.342750 
iter  10 value 93.927196
iter  20 value 91.598075
iter  30 value 90.011143
iter  40 value 87.864296
iter  50 value 85.375668
iter  60 value 83.486135
iter  70 value 82.587562
iter  80 value 82.250482
iter  90 value 81.900676
iter 100 value 81.325281
final  value 81.325281 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 128.219545 
iter  10 value 94.440096
iter  20 value 86.617890
iter  30 value 85.103058
iter  40 value 84.723934
iter  50 value 84.201727
iter  60 value 84.088412
iter  70 value 83.789347
iter  80 value 82.642467
iter  90 value 82.236447
iter 100 value 82.198599
final  value 82.198599 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 110.547545 
iter  10 value 94.074444
iter  20 value 89.273375
iter  30 value 87.445607
iter  40 value 84.240600
iter  50 value 82.687338
iter  60 value 82.191434
iter  70 value 81.805497
iter  80 value 81.572961
iter  90 value 81.254705
iter 100 value 81.052861
final  value 81.052861 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.210669 
iter  10 value 91.143303
iter  20 value 87.384246
iter  30 value 85.241073
iter  40 value 84.773386
iter  50 value 83.074965
iter  60 value 82.871028
iter  70 value 82.687856
iter  80 value 82.594672
iter  90 value 82.499610
iter 100 value 82.455691
final  value 82.455691 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.115762 
iter  10 value 95.177732
iter  20 value 91.244168
iter  30 value 85.533862
iter  40 value 84.028596
iter  50 value 83.671907
iter  60 value 83.236257
iter  70 value 83.116484
iter  80 value 83.014287
iter  90 value 82.966245
iter 100 value 82.757705
final  value 82.757705 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.337566 
iter  10 value 94.239022
iter  20 value 93.706436
iter  30 value 85.225352
iter  40 value 84.167647
iter  50 value 83.729661
iter  60 value 83.586257
iter  70 value 82.548917
iter  80 value 82.093624
iter  90 value 82.063309
iter 100 value 82.046899
final  value 82.046899 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.010160 
iter  10 value 93.901791
iter  20 value 93.900313
iter  30 value 90.793419
iter  40 value 86.353516
iter  50 value 85.933017
final  value 85.933008 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.284293 
iter  10 value 94.054754
final  value 94.052912 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.357315 
final  value 94.054412 
converged
Fitting Repeat 4 

# weights:  103
initial  value 110.847420 
final  value 94.054746 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.262274 
iter  10 value 94.054578
iter  20 value 92.443461
iter  30 value 86.273187
iter  40 value 86.273081
iter  50 value 85.933160
final  value 85.933056 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.057221 
iter  10 value 94.056954
final  value 94.052916 
converged
Fitting Repeat 2 

# weights:  305
initial  value 100.581669 
iter  10 value 94.057734
iter  20 value 94.052846
iter  30 value 93.607262
final  value 93.604633 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.567193 
iter  10 value 92.296303
iter  20 value 92.294841
iter  30 value 89.583184
iter  40 value 87.132475
iter  50 value 85.605356
iter  60 value 85.385906
iter  70 value 85.382101
iter  80 value 85.014443
iter  90 value 82.519149
iter 100 value 81.649638
final  value 81.649638 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 103.134473 
iter  10 value 93.841825
iter  20 value 93.690954
iter  30 value 87.203180
iter  40 value 86.168268
iter  50 value 86.160963
iter  60 value 85.438489
iter  70 value 84.905880
iter  80 value 84.183158
iter  90 value 83.657487
iter 100 value 83.642307
final  value 83.642307 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 113.549311 
iter  10 value 93.841305
iter  20 value 93.837707
final  value 93.836477 
converged
Fitting Repeat 1 

# weights:  507
initial  value 116.010810 
iter  10 value 94.060873
iter  20 value 94.053064
iter  20 value 94.053063
iter  30 value 93.065278
iter  40 value 85.112610
iter  50 value 84.648362
iter  60 value 84.610540
iter  70 value 84.609378
iter  80 value 84.602679
iter  90 value 84.601531
iter 100 value 84.600028
final  value 84.600028 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 95.412585 
iter  10 value 94.059697
iter  20 value 92.285041
iter  30 value 85.418100
iter  40 value 85.415021
iter  50 value 84.457869
iter  60 value 82.006913
iter  70 value 81.604855
iter  80 value 81.073770
iter  90 value 80.888402
iter 100 value 80.888284
final  value 80.888284 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 101.775016 
final  value 94.060890 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.269414 
iter  10 value 94.061556
iter  20 value 94.052975
iter  30 value 87.646158
iter  40 value 84.752894
iter  50 value 81.872905
iter  60 value 80.612158
iter  70 value 79.565546
iter  80 value 79.417880
iter  90 value 79.208815
iter 100 value 79.176457
final  value 79.176457 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 98.088755 
iter  10 value 91.655677
iter  20 value 87.624808
iter  30 value 87.619357
iter  40 value 85.703450
iter  50 value 84.740046
iter  60 value 84.728799
iter  70 value 82.000216
iter  80 value 81.834434
iter  90 value 81.442286
iter 100 value 81.410499
final  value 81.410499 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.086626 
iter  10 value 86.309449
iter  20 value 85.952094
final  value 85.951717 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.224695 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.903851 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.052558 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.667904 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.318450 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.985168 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.918798 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.332000 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 94.760569 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 113.937676 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 100.564148 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 108.367925 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.188603 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 103.151369 
iter  10 value 93.064738
iter  20 value 92.811041
iter  30 value 92.715693
final  value 92.715463 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.862236 
iter  10 value 94.502311
iter  20 value 93.989545
iter  30 value 92.379731
iter  40 value 85.237871
iter  50 value 85.133984
iter  60 value 84.444071
iter  70 value 83.942990
iter  80 value 83.876088
iter  90 value 83.835562
final  value 83.835454 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.209213 
iter  10 value 93.888341
iter  20 value 89.855131
iter  30 value 87.900565
iter  40 value 85.266138
iter  50 value 84.469645
iter  60 value 84.380427
iter  70 value 84.251129
final  value 84.246923 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.236321 
iter  10 value 94.506347
iter  20 value 94.414234
iter  30 value 93.973591
iter  40 value 93.960378
iter  50 value 93.603620
iter  60 value 85.962577
iter  70 value 85.356976
iter  80 value 84.105822
iter  90 value 83.915954
iter 100 value 83.838057
final  value 83.838057 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 99.554060 
iter  10 value 94.486467
iter  20 value 89.169819
iter  30 value 85.060101
iter  40 value 84.415896
iter  50 value 84.292035
final  value 84.288136 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.401366 
iter  10 value 94.220978
iter  20 value 85.726477
iter  30 value 84.661774
iter  40 value 83.658025
iter  50 value 83.517166
iter  60 value 83.491072
final  value 83.491067 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.721042 
iter  10 value 94.417276
iter  20 value 85.181173
iter  30 value 84.379795
iter  40 value 84.140171
iter  50 value 84.037803
iter  60 value 83.927373
iter  70 value 83.629316
iter  80 value 82.241311
iter  90 value 81.893955
iter 100 value 81.788171
final  value 81.788171 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 102.780569 
iter  10 value 94.386537
iter  20 value 87.544366
iter  30 value 86.845762
iter  40 value 84.612061
iter  50 value 83.734578
iter  60 value 82.472347
iter  70 value 81.799945
iter  80 value 81.726474
iter  90 value 81.501244
iter 100 value 81.368829
final  value 81.368829 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.402516 
iter  10 value 93.809296
iter  20 value 89.977253
iter  30 value 89.035610
iter  40 value 84.875789
iter  50 value 83.549302
iter  60 value 83.253476
iter  70 value 83.181815
iter  80 value 83.163335
iter  90 value 82.709320
iter 100 value 81.828073
final  value 81.828073 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.656747 
iter  10 value 94.352837
iter  20 value 91.410123
iter  30 value 88.682359
iter  40 value 85.292861
iter  50 value 83.332626
iter  60 value 82.932213
iter  70 value 82.776345
iter  80 value 82.452192
iter  90 value 82.311831
iter 100 value 82.294649
final  value 82.294649 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.803070 
iter  10 value 92.612163
iter  20 value 85.290205
iter  30 value 85.143622
iter  40 value 84.197234
iter  50 value 83.864769
iter  60 value 83.743881
iter  70 value 83.518475
iter  80 value 83.285380
iter  90 value 82.945440
iter 100 value 82.336156
final  value 82.336156 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 123.311421 
iter  10 value 94.619741
iter  20 value 93.791270
iter  30 value 91.974093
iter  40 value 89.566326
iter  50 value 85.831348
iter  60 value 83.609781
iter  70 value 82.585920
iter  80 value 81.939661
iter  90 value 81.561679
iter 100 value 81.362609
final  value 81.362609 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 116.034944 
iter  10 value 94.494781
iter  20 value 91.208446
iter  30 value 86.913838
iter  40 value 83.654183
iter  50 value 83.229131
iter  60 value 83.043138
iter  70 value 82.743802
iter  80 value 82.722588
iter  90 value 82.634197
iter 100 value 82.174752
final  value 82.174752 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.940280 
iter  10 value 94.401316
iter  20 value 89.322729
iter  30 value 84.849029
iter  40 value 84.276058
iter  50 value 83.351048
iter  60 value 82.891603
iter  70 value 82.593077
iter  80 value 81.671222
iter  90 value 81.433478
iter 100 value 81.203268
final  value 81.203268 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 114.331211 
iter  10 value 97.455125
iter  20 value 89.277976
iter  30 value 86.456399
iter  40 value 85.100369
iter  50 value 83.984592
iter  60 value 83.361992
iter  70 value 82.940409
iter  80 value 82.076294
iter  90 value 81.766311
iter 100 value 81.643265
final  value 81.643265 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.102307 
iter  10 value 97.511559
iter  20 value 93.777490
iter  30 value 88.779151
iter  40 value 85.213448
iter  50 value 83.806633
iter  60 value 82.256332
iter  70 value 81.458814
iter  80 value 81.276060
iter  90 value 81.178919
iter 100 value 81.077369
final  value 81.077369 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.226873 
final  value 94.485788 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.831383 
iter  10 value 93.902531
iter  20 value 84.624604
iter  30 value 82.573041
iter  40 value 82.564207
final  value 82.563994 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.867472 
final  value 94.486021 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.995974 
final  value 94.485756 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.944548 
iter  10 value 94.485868
iter  20 value 94.047382
iter  20 value 94.047381
iter  20 value 94.047381
final  value 94.047381 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.305351 
iter  10 value 94.359181
iter  20 value 93.859666
iter  30 value 93.728509
iter  40 value 93.725666
final  value 93.724965 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.532830 
iter  10 value 93.793829
iter  20 value 93.793174
iter  30 value 93.773768
iter  40 value 85.649319
iter  50 value 85.226429
iter  60 value 85.154692
final  value 85.154279 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.598728 
iter  10 value 94.489340
iter  20 value 94.280969
final  value 93.911951 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.917230 
iter  10 value 94.488932
iter  20 value 94.470601
iter  30 value 93.876017
iter  40 value 93.216592
iter  50 value 86.595034
final  value 86.589702 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.400387 
iter  10 value 94.359325
iter  20 value 93.690012
iter  30 value 83.992727
iter  40 value 83.727001
iter  50 value 82.077797
iter  60 value 82.010654
iter  70 value 81.992627
iter  80 value 81.924009
iter  90 value 81.919762
iter 100 value 81.917906
final  value 81.917906 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 125.306393 
iter  10 value 94.363702
iter  20 value 94.095611
iter  30 value 93.718819
iter  40 value 93.656782
iter  50 value 93.656303
iter  60 value 93.655382
iter  70 value 93.649763
iter  80 value 85.673196
iter  90 value 83.949183
iter 100 value 83.936551
final  value 83.936551 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 97.284110 
iter  10 value 91.394973
iter  20 value 84.041803
iter  30 value 84.038696
iter  40 value 84.036755
iter  50 value 83.446775
iter  60 value 83.007628
iter  70 value 82.999230
iter  80 value 82.996488
iter  90 value 82.996361
final  value 82.996343 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.031482 
iter  10 value 92.533250
iter  20 value 90.272129
iter  30 value 90.247663
iter  40 value 88.958637
iter  50 value 88.111766
iter  60 value 87.053195
iter  70 value 87.007388
iter  80 value 87.006049
iter  90 value 87.004717
final  value 87.003131 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.756060 
iter  10 value 94.254162
iter  20 value 94.251350
iter  30 value 94.246877
final  value 94.246299 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.478630 
iter  10 value 94.232172
final  value 94.228149 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.805390 
iter  10 value 93.164282
iter  10 value 93.164282
iter  10 value 93.164282
final  value 93.164282 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.681635 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.571877 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.709560 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.891484 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.925711 
iter  10 value 91.294143
iter  20 value 87.988447
iter  30 value 87.755324
iter  40 value 87.576025
iter  50 value 87.559331
iter  60 value 87.525369
iter  70 value 87.280373
iter  80 value 87.154692
iter  80 value 87.154692
iter  80 value 87.154691
final  value 87.154691 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.180156 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.973087 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 103.554074 
final  value 94.312038 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.944739 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 106.563490 
final  value 93.813953 
converged
Fitting Repeat 2 

# weights:  507
initial  value 108.901039 
iter  10 value 93.772973
iter  10 value 93.772973
iter  10 value 93.772973
final  value 93.772973 
converged
Fitting Repeat 3 

# weights:  507
initial  value 114.235366 
iter  10 value 93.772982
final  value 93.772973 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.637500 
iter  10 value 90.617115
iter  20 value 86.352068
iter  30 value 84.309815
iter  40 value 84.297954
final  value 84.297262 
converged
Fitting Repeat 5 

# weights:  507
initial  value 109.416522 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.282269 
iter  10 value 94.662074
iter  20 value 89.039759
iter  30 value 85.732686
iter  40 value 83.736020
iter  50 value 83.557995
iter  60 value 83.524156
iter  70 value 83.201960
iter  80 value 81.624480
iter  90 value 81.418603
iter 100 value 81.329434
final  value 81.329434 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 96.681083 
iter  10 value 94.122054
iter  20 value 91.747985
iter  30 value 85.220958
iter  40 value 84.538669
iter  50 value 83.925262
iter  60 value 82.826967
iter  70 value 81.359078
iter  80 value 81.309081
iter  90 value 81.307446
final  value 81.307445 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.818771 
iter  10 value 88.606205
iter  20 value 86.202957
iter  30 value 85.412952
iter  40 value 85.064568
iter  50 value 82.717842
iter  60 value 81.408456
iter  70 value 81.315336
final  value 81.314848 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.248299 
iter  10 value 94.483065
iter  20 value 93.422358
iter  30 value 93.065788
iter  40 value 89.908957
iter  50 value 84.351811
iter  60 value 83.743639
iter  70 value 81.450888
iter  80 value 81.315223
iter  90 value 81.312692
final  value 81.312647 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.369564 
iter  10 value 94.475539
iter  20 value 92.100694
iter  30 value 88.420583
iter  40 value 88.078489
iter  50 value 84.787190
iter  60 value 84.538975
iter  70 value 84.524817
final  value 84.524802 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.338749 
iter  10 value 94.492081
iter  20 value 93.416494
iter  30 value 93.231935
iter  40 value 85.865975
iter  50 value 83.273704
iter  60 value 81.619515
iter  70 value 80.536843
iter  80 value 80.008769
iter  90 value 79.893006
iter 100 value 79.782390
final  value 79.782390 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 105.524682 
iter  10 value 94.954618
iter  20 value 93.653982
iter  30 value 88.313275
iter  40 value 85.477767
iter  50 value 84.730678
iter  60 value 84.328892
iter  70 value 84.102025
iter  80 value 83.797994
iter  90 value 81.332656
iter 100 value 80.461762
final  value 80.461762 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 116.619785 
iter  10 value 94.373514
iter  20 value 86.721945
iter  30 value 85.274481
iter  40 value 84.835571
iter  50 value 84.530413
iter  60 value 84.268964
iter  70 value 82.829434
iter  80 value 81.559920
iter  90 value 81.274240
iter 100 value 80.939524
final  value 80.939524 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 106.745203 
iter  10 value 93.424695
iter  20 value 92.771799
iter  30 value 88.835411
iter  40 value 87.412685
iter  50 value 86.666468
iter  60 value 85.248602
iter  70 value 81.791780
iter  80 value 81.073791
iter  90 value 80.626897
iter 100 value 80.376694
final  value 80.376694 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.101708 
iter  10 value 94.445605
iter  20 value 93.489754
iter  30 value 93.132539
iter  40 value 91.958779
iter  50 value 84.957291
iter  60 value 81.622789
iter  70 value 81.428397
iter  80 value 81.071690
iter  90 value 80.560223
iter 100 value 79.922431
final  value 79.922431 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 115.450411 
iter  10 value 94.603869
iter  20 value 93.570548
iter  30 value 86.089400
iter  40 value 84.861589
iter  50 value 82.846739
iter  60 value 81.177171
iter  70 value 80.876908
iter  80 value 80.781323
iter  90 value 80.401268
iter 100 value 79.944156
final  value 79.944156 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 143.837515 
iter  10 value 95.096721
iter  20 value 93.290544
iter  30 value 86.006368
iter  40 value 84.634423
iter  50 value 84.535146
iter  60 value 84.438575
iter  70 value 84.205875
iter  80 value 83.969570
iter  90 value 82.376689
iter 100 value 81.650923
final  value 81.650923 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 115.132809 
iter  10 value 94.486217
iter  20 value 88.003552
iter  30 value 86.947515
iter  40 value 85.804149
iter  50 value 84.146266
iter  60 value 83.889308
iter  70 value 83.780119
iter  80 value 82.919529
iter  90 value 82.323082
iter 100 value 81.644822
final  value 81.644822 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 125.197481 
iter  10 value 94.492146
iter  20 value 93.293725
iter  30 value 91.762673
iter  40 value 88.700914
iter  50 value 85.575867
iter  60 value 83.150298
iter  70 value 81.554287
iter  80 value 81.108010
iter  90 value 80.653866
iter 100 value 80.483217
final  value 80.483217 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.434466 
iter  10 value 91.783196
iter  20 value 87.427265
iter  30 value 84.503904
iter  40 value 81.372856
iter  50 value 80.342693
iter  60 value 80.291405
iter  70 value 80.151543
iter  80 value 79.992997
iter  90 value 79.859453
iter 100 value 79.833844
final  value 79.833844 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.887774 
final  value 94.485844 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.294540 
final  value 94.485916 
converged
Fitting Repeat 3 

# weights:  103
initial  value 93.656771 
iter  10 value 92.782038
iter  20 value 92.780773
iter  30 value 92.779357
final  value 92.779356 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.175683 
final  value 94.485804 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.574728 
final  value 94.486168 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.519540 
iter  10 value 93.497393
iter  20 value 93.169545
iter  30 value 92.784309
iter  40 value 92.783010
iter  50 value 92.780615
iter  60 value 92.779979
final  value 92.779915 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.482008 
iter  10 value 94.166086
iter  20 value 93.778741
iter  30 value 93.435275
iter  40 value 92.795842
iter  50 value 92.765582
iter  60 value 92.758699
iter  70 value 92.758381
iter  70 value 92.758381
iter  70 value 92.758381
final  value 92.758381 
converged
Fitting Repeat 3 

# weights:  305
initial  value 109.083807 
iter  10 value 94.487392
iter  20 value 94.474103
iter  30 value 86.245905
iter  40 value 85.889372
iter  50 value 85.879154
final  value 85.879132 
converged
Fitting Repeat 4 

# weights:  305
initial  value 106.187889 
iter  10 value 93.115437
iter  20 value 89.516586
iter  30 value 86.121612
iter  40 value 86.114476
iter  40 value 86.114476
final  value 86.114476 
converged
Fitting Repeat 5 

# weights:  305
initial  value 125.556214 
iter  10 value 93.778272
iter  20 value 93.776725
iter  30 value 93.065555
iter  40 value 93.024225
iter  50 value 92.817991
iter  60 value 89.071023
iter  70 value 85.526867
iter  80 value 85.251397
iter  90 value 85.251188
final  value 85.251012 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.933551 
iter  10 value 94.491718
iter  20 value 94.484284
final  value 94.484241 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.332266 
iter  10 value 94.493046
iter  20 value 94.395170
iter  30 value 85.517800
iter  40 value 84.044214
iter  50 value 83.944839
iter  60 value 83.931700
iter  70 value 83.270673
iter  80 value 83.207132
iter  90 value 83.197415
iter 100 value 83.197152
final  value 83.197152 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 113.381965 
iter  10 value 94.490219
iter  20 value 87.476625
final  value 86.334605 
converged
Fitting Repeat 4 

# weights:  507
initial  value 100.558588 
iter  10 value 93.781258
iter  20 value 93.780280
iter  30 value 92.862690
iter  40 value 92.094946
iter  50 value 87.275189
iter  60 value 86.258303
iter  70 value 86.223312
iter  80 value 86.222524
iter  90 value 85.937898
iter 100 value 85.310350
final  value 85.310350 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 95.858293 
iter  10 value 93.028412
iter  20 value 91.384222
iter  30 value 91.278293
iter  40 value 91.276275
iter  50 value 90.045905
iter  60 value 89.475456
iter  70 value 83.817612
iter  80 value 81.169680
iter  90 value 81.001632
iter 100 value 80.425994
final  value 80.425994 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 123.709895 
iter  10 value 117.895370
iter  20 value 117.875745
iter  30 value 117.870400
iter  40 value 117.867151
iter  50 value 117.850632
iter  60 value 115.431481
iter  70 value 115.128916
iter  80 value 110.450088
iter  90 value 109.467182
iter 100 value 108.534094
final  value 108.534094 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 154.243380 
iter  10 value 117.894812
iter  20 value 117.890325
final  value 117.890309 
converged
Fitting Repeat 3 

# weights:  305
initial  value 119.131545 
iter  10 value 117.763433
iter  20 value 117.483608
iter  30 value 117.457133
iter  40 value 117.455592
iter  50 value 117.445082
final  value 117.445010 
converged
Fitting Repeat 4 

# weights:  305
initial  value 120.818823 
iter  10 value 117.894832
iter  20 value 117.346478
iter  30 value 108.531201
iter  40 value 108.506942
iter  50 value 108.432933
iter  60 value 108.432152
iter  70 value 108.175499
iter  80 value 107.087435
iter  90 value 107.085284
iter 100 value 107.084837
final  value 107.084837 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 123.837271 
iter  10 value 115.992566
iter  20 value 108.546316
iter  30 value 108.338275
iter  40 value 108.336778
iter  50 value 106.530442
iter  60 value 106.018203
iter  70 value 106.015144
final  value 106.011542 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Thu Dec 29 00:36:40 2022 
*********************************************** 
Number of test functions: 8 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures
Number of test functions: 8 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: The `.data` argument of `add_column()` must have unique names as of tibble
3.0.0.
ℹ Use `.name_repair = "minimal"`.
ℹ The deprecated feature was likely used in the tibble package.
  Please report the issue at <https://github.com/tidyverse/tibble/issues>. 
2: `repeats` has no meaning for this resampling method. 
3: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  36.43    1.70   38.86 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod25.22 1.4026.81
FreqInteractors0.190.030.22
calculateAAC0.050.000.05
calculateAutocor0.280.080.35
calculateBE0.140.020.16
calculateCTDC0.080.000.08
calculateCTDD0.640.060.70
calculateCTDT0.220.000.22
calculateCTriad0.220.080.30
calculateDC0.070.000.08
calculateF0.290.000.28
calculateKSAAP0.040.030.08
calculateQD_Sm1.160.081.23
calculateTC1.260.081.34
calculateTC_Sm0.180.010.19
corr_plot25.67 0.7526.42
enrichfindP0.370.057.53
enrichfind_hp0.030.010.80
enrichplot0.270.000.27
filter_missing_values0.000.020.01
getFASTA0.020.002.52
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.040.010.08
pred_ensembel11.61 0.40 8.56
var_imp26.88 0.8227.72