Back to Build/check report for BioC 3.17 |
|
This page was generated on 2023-01-02 09:00:33 -0500 (Mon, 02 Jan 2023).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
palomino5 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2022-12-25 r83502 ucrt) -- "Unsuffered Consequences" | 4165 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
To the developers/maintainers of the HPiP package: Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
Package 912/2158 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.5.0 (landing page) Matineh Rahmatbakhsh
| palomino5 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ||||||||
Package: HPiP |
Version: 1.5.0 |
Command: F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings HPiP_1.5.0.tar.gz |
StartedAt: 2022-12-29 00:32:58 -0500 (Thu, 29 Dec 2022) |
EndedAt: 2022-12-29 00:36:51 -0500 (Thu, 29 Dec 2022) |
EllapsedTime: 232.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.17-bioc\R\library --no-vignettes --timings HPiP_1.5.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.17-bioc-rtools43/meat/HPiP.Rcheck' * using R Under development (unstable) (2022-12-25 r83502 ucrt) * using platform: x86_64-w64-mingw32 (64-bit) * R was compiled by gcc.exe (GCC) 10.4.0 GNU Fortran (GCC) 10.4.0 * running under: Windows Server x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.5.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 26.88 0.82 27.72 FSmethod 25.22 1.40 26.81 corr_plot 25.67 0.75 26.42 pred_ensembel 11.61 0.40 8.56 enrichfindP 0.37 0.05 7.53 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See 'F:/biocbuild/bbs-3.17-bioc-rtools43/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.17-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.17-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2022-12-25 r83502 ucrt) -- "Unsuffered Consequences" Copyright (C) 2022 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 97.899732 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.741587 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 107.428120 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.166035 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 107.934203 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 112.177079 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 107.420928 iter 10 value 94.377441 final value 94.354396 converged Fitting Repeat 3 # weights: 305 initial value 99.839953 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 117.068292 final value 94.354396 converged Fitting Repeat 5 # weights: 305 initial value 96.689935 final value 94.354396 converged Fitting Repeat 1 # weights: 507 initial value 113.117914 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 102.491784 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 99.279929 final value 93.943255 converged Fitting Repeat 4 # weights: 507 initial value 97.936809 iter 10 value 87.368087 iter 20 value 85.400844 iter 30 value 85.285353 iter 30 value 85.285353 iter 30 value 85.285353 final value 85.285353 converged Fitting Repeat 5 # weights: 507 initial value 93.579349 iter 10 value 92.195776 iter 20 value 92.188098 final value 92.188059 converged Fitting Repeat 1 # weights: 103 initial value 103.562732 iter 10 value 94.466202 iter 20 value 94.391837 iter 30 value 94.377647 iter 40 value 83.130619 iter 50 value 81.428594 iter 60 value 80.386714 iter 70 value 78.946960 iter 80 value 78.347203 iter 90 value 78.264355 iter 100 value 78.261307 final value 78.261307 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 107.711590 iter 10 value 94.482107 iter 20 value 92.975123 iter 30 value 85.529085 iter 40 value 82.981046 iter 50 value 80.948048 iter 60 value 80.562862 iter 70 value 79.350671 iter 80 value 78.264965 iter 90 value 78.261013 final value 78.260981 converged Fitting Repeat 3 # weights: 103 initial value 104.081718 iter 10 value 92.917314 iter 20 value 89.700761 iter 30 value 80.530184 iter 40 value 79.307129 iter 50 value 79.034524 iter 60 value 78.944282 iter 70 value 78.919907 iter 80 value 78.164993 iter 90 value 77.940291 iter 100 value 77.908344 final value 77.908344 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.668659 iter 10 value 94.488922 iter 20 value 94.425146 iter 30 value 92.339461 iter 40 value 91.594721 iter 50 value 91.101870 iter 60 value 90.380919 iter 70 value 90.366558 iter 80 value 90.363014 iter 90 value 90.325703 iter 100 value 90.318427 final value 90.318427 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.423275 iter 10 value 94.447101 iter 20 value 90.797210 iter 30 value 84.535616 iter 40 value 83.802487 iter 50 value 83.497792 iter 60 value 82.595252 iter 70 value 82.084881 iter 80 value 79.529078 iter 90 value 78.410796 iter 100 value 78.262413 final value 78.262413 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 109.267699 iter 10 value 94.220664 iter 20 value 93.135484 iter 30 value 90.943858 iter 40 value 90.618010 iter 50 value 87.617880 iter 60 value 82.365250 iter 70 value 78.473228 iter 80 value 77.176313 iter 90 value 76.808549 iter 100 value 76.684145 final value 76.684145 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.583363 iter 10 value 95.193807 iter 20 value 93.166492 iter 30 value 91.418243 iter 40 value 82.637256 iter 50 value 81.355349 iter 60 value 80.623414 iter 70 value 79.354674 iter 80 value 78.923523 iter 90 value 78.216684 iter 100 value 77.363554 final value 77.363554 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.502951 iter 10 value 94.473879 iter 20 value 86.533025 iter 30 value 85.049701 iter 40 value 84.673123 iter 50 value 83.942735 iter 60 value 80.093104 iter 70 value 79.110359 iter 80 value 77.784077 iter 90 value 76.614622 iter 100 value 76.406488 final value 76.406488 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.983384 iter 10 value 94.483985 iter 20 value 87.464482 iter 30 value 85.693499 iter 40 value 82.309485 iter 50 value 79.970016 iter 60 value 79.530175 iter 70 value 77.989957 iter 80 value 76.404161 iter 90 value 76.194687 iter 100 value 76.145401 final value 76.145401 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.923883 iter 10 value 94.492745 iter 20 value 85.317169 iter 30 value 82.942170 iter 40 value 82.490157 iter 50 value 82.102987 iter 60 value 81.682499 iter 70 value 79.105404 iter 80 value 77.509732 iter 90 value 77.341298 iter 100 value 76.844227 final value 76.844227 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.790244 iter 10 value 94.622135 iter 20 value 94.481168 iter 30 value 94.198151 iter 40 value 83.768129 iter 50 value 82.779060 iter 60 value 82.301421 iter 70 value 80.624053 iter 80 value 79.166064 iter 90 value 78.304338 iter 100 value 77.816598 final value 77.816598 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.807074 iter 10 value 92.951885 iter 20 value 83.490303 iter 30 value 81.278540 iter 40 value 79.761992 iter 50 value 79.243597 iter 60 value 77.641749 iter 70 value 77.387400 iter 80 value 77.088734 iter 90 value 76.742857 iter 100 value 76.456643 final value 76.456643 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 121.675918 iter 10 value 94.385380 iter 20 value 88.242222 iter 30 value 83.079086 iter 40 value 82.106844 iter 50 value 80.799351 iter 60 value 78.919921 iter 70 value 78.134182 iter 80 value 77.789574 iter 90 value 77.519940 iter 100 value 77.305426 final value 77.305426 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 124.640347 iter 10 value 94.726118 iter 20 value 94.545086 iter 30 value 83.441866 iter 40 value 82.762761 iter 50 value 80.439478 iter 60 value 78.746980 iter 70 value 77.519824 iter 80 value 77.323061 iter 90 value 77.001014 iter 100 value 76.892256 final value 76.892256 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.860898 iter 10 value 94.562358 iter 20 value 87.011671 iter 30 value 82.285270 iter 40 value 79.172501 iter 50 value 77.500296 iter 60 value 77.119467 iter 70 value 76.728636 iter 80 value 76.673133 iter 90 value 76.441585 iter 100 value 76.203145 final value 76.203145 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.109947 final value 94.485857 converged Fitting Repeat 2 # weights: 103 initial value 96.281361 iter 10 value 94.485817 iter 20 value 94.454994 iter 30 value 82.514693 iter 40 value 80.864534 iter 50 value 80.836185 iter 60 value 80.834112 iter 70 value 80.633248 iter 80 value 80.619570 final value 80.619272 converged Fitting Repeat 3 # weights: 103 initial value 95.903033 iter 10 value 94.486138 iter 20 value 94.484244 iter 20 value 94.484244 iter 20 value 94.484244 final value 94.484244 converged Fitting Repeat 4 # weights: 103 initial value 101.569262 final value 94.485942 converged Fitting Repeat 5 # weights: 103 initial value 100.767989 final value 94.485998 converged Fitting Repeat 1 # weights: 305 initial value 92.746701 iter 10 value 89.994619 iter 20 value 89.960830 iter 30 value 89.957415 iter 40 value 89.858300 iter 50 value 89.855459 final value 89.854923 converged Fitting Repeat 2 # weights: 305 initial value 98.567737 iter 10 value 94.488898 iter 20 value 94.483545 iter 30 value 92.257618 iter 40 value 84.594606 iter 50 value 84.507038 final value 84.352898 converged Fitting Repeat 3 # weights: 305 initial value 105.312984 iter 10 value 94.433661 iter 20 value 93.607445 final value 85.513842 converged Fitting Repeat 4 # weights: 305 initial value 111.024960 iter 10 value 94.489139 iter 20 value 94.484352 iter 30 value 94.120158 iter 40 value 84.099825 iter 50 value 82.583528 iter 60 value 82.373599 iter 70 value 80.255925 iter 80 value 80.250041 final value 80.249389 converged Fitting Repeat 5 # weights: 305 initial value 96.948753 iter 10 value 94.432562 iter 20 value 94.419409 iter 30 value 87.604475 iter 40 value 86.079831 iter 50 value 86.078113 iter 50 value 86.078113 final value 86.078113 converged Fitting Repeat 1 # weights: 507 initial value 95.668037 iter 10 value 94.487234 iter 20 value 92.562536 iter 30 value 87.133886 iter 40 value 87.026187 iter 50 value 87.002720 iter 60 value 86.983339 iter 70 value 86.966748 iter 80 value 85.994619 iter 90 value 80.681117 iter 100 value 78.693002 final value 78.693002 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.862632 iter 10 value 92.221958 iter 20 value 92.146553 iter 30 value 92.140389 iter 40 value 89.541031 iter 50 value 81.654587 iter 60 value 80.433475 iter 70 value 79.985678 iter 80 value 78.171400 iter 90 value 75.660745 iter 100 value 74.713813 final value 74.713813 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 100.832399 iter 10 value 94.391357 iter 20 value 94.381921 iter 30 value 94.273984 iter 40 value 81.835016 iter 50 value 81.629072 iter 60 value 81.460482 iter 70 value 81.455302 iter 80 value 78.154213 iter 90 value 77.539450 iter 100 value 77.345610 final value 77.345610 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.071242 iter 10 value 94.492008 iter 20 value 94.301183 final value 87.540491 converged Fitting Repeat 5 # weights: 507 initial value 117.917880 iter 10 value 94.491869 iter 20 value 85.863989 iter 30 value 85.342485 iter 40 value 85.334955 iter 50 value 85.334733 final value 85.334458 converged Fitting Repeat 1 # weights: 103 initial value 100.396279 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.234757 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.841216 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.462207 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 93.102023 iter 10 value 92.501715 final value 92.501299 converged Fitting Repeat 1 # weights: 305 initial value 94.364118 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 113.821452 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 105.146405 iter 10 value 89.772877 final value 89.772792 converged Fitting Repeat 4 # weights: 305 initial value 116.169995 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 111.269346 final value 93.867391 converged Fitting Repeat 1 # weights: 507 initial value 114.024886 iter 10 value 93.867395 final value 93.867391 converged Fitting Repeat 2 # weights: 507 initial value 120.716641 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 110.895678 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 126.671145 iter 10 value 93.867391 iter 10 value 93.867391 iter 10 value 93.867391 final value 93.867391 converged Fitting Repeat 5 # weights: 507 initial value 98.841324 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 96.209877 iter 10 value 94.018243 iter 20 value 90.274551 iter 30 value 87.450795 iter 40 value 82.900235 iter 50 value 81.990996 iter 60 value 81.066338 iter 70 value 80.982699 iter 80 value 80.642864 iter 90 value 80.549616 final value 80.546352 converged Fitting Repeat 2 # weights: 103 initial value 97.015072 iter 10 value 94.057010 iter 20 value 93.359913 iter 30 value 91.082838 iter 40 value 90.541560 iter 50 value 88.904827 iter 60 value 81.083345 iter 70 value 80.883903 iter 80 value 80.818319 iter 90 value 80.536128 iter 100 value 80.303438 final value 80.303438 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 95.956037 iter 10 value 94.061640 iter 20 value 91.312523 iter 30 value 83.706450 iter 40 value 82.339981 iter 50 value 82.245947 iter 60 value 81.996222 iter 70 value 81.847993 iter 80 value 81.765195 final value 81.765192 converged Fitting Repeat 4 # weights: 103 initial value 106.873127 iter 10 value 93.301371 iter 20 value 84.540519 iter 30 value 83.137466 iter 40 value 82.531742 iter 50 value 81.957633 iter 60 value 81.907109 iter 70 value 81.823392 iter 80 value 81.765354 final value 81.765192 converged Fitting Repeat 5 # weights: 103 initial value 102.021043 iter 10 value 94.055174 iter 20 value 84.965206 iter 30 value 83.954743 iter 40 value 83.046933 iter 50 value 82.452902 iter 60 value 82.410656 iter 70 value 82.358876 iter 80 value 82.254516 iter 90 value 82.124629 iter 100 value 82.034019 final value 82.034019 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.587484 iter 10 value 94.061872 iter 20 value 89.404942 iter 30 value 84.166896 iter 40 value 82.712943 iter 50 value 81.616455 iter 60 value 80.388356 iter 70 value 79.956767 iter 80 value 79.675503 iter 90 value 79.271490 iter 100 value 79.022547 final value 79.022547 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 117.182248 iter 10 value 93.933048 iter 20 value 86.887485 iter 30 value 84.900541 iter 40 value 83.109669 iter 50 value 82.046726 iter 60 value 81.823543 iter 70 value 81.437561 iter 80 value 80.672161 iter 90 value 79.771342 iter 100 value 79.607569 final value 79.607569 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.861202 iter 10 value 94.084871 iter 20 value 93.526500 iter 30 value 89.751945 iter 40 value 83.887963 iter 50 value 83.444264 iter 60 value 83.009833 iter 70 value 82.882398 iter 80 value 82.718103 iter 90 value 81.634345 iter 100 value 81.038004 final value 81.038004 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.252071 iter 10 value 93.924276 iter 20 value 90.979779 iter 30 value 87.178695 iter 40 value 82.279797 iter 50 value 81.692295 iter 60 value 81.335550 iter 70 value 81.176478 iter 80 value 81.124186 iter 90 value 80.659071 iter 100 value 80.058966 final value 80.058966 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.507888 iter 10 value 94.084566 iter 20 value 93.975733 iter 30 value 93.289944 iter 40 value 87.518855 iter 50 value 84.752720 iter 60 value 81.978679 iter 70 value 81.337957 iter 80 value 80.985185 iter 90 value 80.450857 iter 100 value 80.069105 final value 80.069105 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.998136 iter 10 value 91.237022 iter 20 value 89.341567 iter 30 value 83.933424 iter 40 value 82.474745 iter 50 value 82.377075 iter 60 value 82.156188 iter 70 value 80.860527 iter 80 value 80.120007 iter 90 value 80.018657 iter 100 value 79.864357 final value 79.864357 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.481563 iter 10 value 94.116585 iter 20 value 92.296803 iter 30 value 87.665005 iter 40 value 85.160613 iter 50 value 81.434595 iter 60 value 80.724422 iter 70 value 80.395094 iter 80 value 80.027571 iter 90 value 79.614383 iter 100 value 79.568049 final value 79.568049 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.792040 iter 10 value 94.285727 iter 20 value 85.518106 iter 30 value 83.495155 iter 40 value 82.378018 iter 50 value 80.716716 iter 60 value 80.142905 iter 70 value 79.932642 iter 80 value 79.560406 iter 90 value 79.367658 iter 100 value 79.233882 final value 79.233882 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.037825 iter 10 value 96.754547 iter 20 value 96.264209 iter 30 value 87.265206 iter 40 value 82.014200 iter 50 value 80.787767 iter 60 value 80.325794 iter 70 value 80.281648 iter 80 value 80.087206 iter 90 value 79.766508 iter 100 value 79.195647 final value 79.195647 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.337756 iter 10 value 94.321413 iter 20 value 87.253055 iter 30 value 84.641715 iter 40 value 83.984720 iter 50 value 82.323512 iter 60 value 81.519042 iter 70 value 81.349399 iter 80 value 80.918540 iter 90 value 80.278209 iter 100 value 79.559813 final value 79.559813 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.167887 final value 94.054650 converged Fitting Repeat 2 # weights: 103 initial value 98.765686 final value 94.054434 converged Fitting Repeat 3 # weights: 103 initial value 94.922587 final value 94.054494 converged Fitting Repeat 4 # weights: 103 initial value 113.865515 iter 10 value 93.869368 iter 20 value 93.814672 iter 30 value 90.218587 iter 40 value 89.924950 iter 50 value 89.625347 iter 60 value 89.625055 iter 70 value 89.624943 iter 80 value 88.381740 iter 80 value 88.381740 final value 88.381740 converged Fitting Repeat 5 # weights: 103 initial value 96.289404 final value 94.054608 converged Fitting Repeat 1 # weights: 305 initial value 98.729980 iter 10 value 94.057126 iter 20 value 93.599956 iter 30 value 83.275622 iter 40 value 82.563452 iter 50 value 82.558850 iter 60 value 82.558614 final value 82.557105 converged Fitting Repeat 2 # weights: 305 initial value 98.809494 iter 10 value 93.872280 iter 20 value 93.868298 iter 30 value 92.020868 iter 40 value 91.849886 iter 50 value 90.615857 final value 90.615407 converged Fitting Repeat 3 # weights: 305 initial value 94.799405 iter 10 value 94.057268 iter 20 value 93.769018 iter 30 value 83.381197 iter 40 value 83.307056 iter 50 value 83.277600 iter 60 value 82.523853 iter 70 value 79.884936 iter 80 value 79.881660 iter 90 value 79.880328 final value 79.879276 converged Fitting Repeat 4 # weights: 305 initial value 106.494571 iter 10 value 90.978672 iter 20 value 83.388397 iter 30 value 82.469174 iter 40 value 81.211151 iter 50 value 81.028335 iter 60 value 80.889140 iter 70 value 80.769366 iter 80 value 80.767532 iter 90 value 80.765335 iter 100 value 80.697922 final value 80.697922 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.464231 iter 10 value 94.058193 iter 20 value 94.025362 iter 30 value 89.497896 iter 40 value 89.495794 final value 89.495777 converged Fitting Repeat 1 # weights: 507 initial value 100.387794 iter 10 value 93.568668 iter 20 value 93.236877 iter 30 value 88.315618 iter 40 value 84.970610 iter 50 value 81.212098 iter 60 value 81.165840 iter 70 value 81.162109 final value 81.162066 converged Fitting Repeat 2 # weights: 507 initial value 119.315281 iter 10 value 93.874833 iter 20 value 93.869548 iter 30 value 93.869212 iter 40 value 93.850056 iter 50 value 84.913868 iter 60 value 82.943624 iter 70 value 82.548913 iter 80 value 82.336929 iter 90 value 80.272670 iter 100 value 80.012881 final value 80.012881 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 100.991516 iter 10 value 93.203952 iter 20 value 92.900825 iter 30 value 92.900062 iter 40 value 92.896305 iter 50 value 92.895368 iter 60 value 92.864686 iter 70 value 83.356495 iter 80 value 82.938721 iter 90 value 82.707278 iter 100 value 82.625745 final value 82.625745 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.809736 iter 10 value 94.051499 iter 20 value 87.798056 iter 30 value 82.978662 iter 40 value 81.719127 final value 81.718727 converged Fitting Repeat 5 # weights: 507 initial value 117.935051 iter 10 value 93.875880 iter 20 value 93.010176 iter 30 value 85.968280 iter 40 value 85.822209 iter 50 value 85.815538 iter 60 value 85.815461 final value 85.815459 converged Fitting Repeat 1 # weights: 103 initial value 95.271002 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.039690 iter 10 value 93.290807 iter 20 value 93.288893 final value 93.288889 converged Fitting Repeat 3 # weights: 103 initial value 97.939774 final value 93.836066 converged Fitting Repeat 4 # weights: 103 initial value 96.687301 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.642387 iter 10 value 88.679691 iter 20 value 84.102952 iter 30 value 82.585225 iter 40 value 80.829479 iter 50 value 80.323720 iter 60 value 80.321705 final value 80.321695 converged Fitting Repeat 1 # weights: 305 initial value 106.785385 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 97.408636 iter 10 value 93.547849 iter 20 value 88.104107 iter 30 value 84.512718 iter 40 value 84.503272 final value 84.503042 converged Fitting Repeat 3 # weights: 305 initial value 97.504395 final value 93.836066 converged Fitting Repeat 4 # weights: 305 initial value 101.292950 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 111.149962 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 129.550106 iter 10 value 86.803972 iter 20 value 84.611360 iter 30 value 84.228753 iter 40 value 84.187683 final value 84.187625 converged Fitting Repeat 2 # weights: 507 initial value 110.924318 iter 10 value 93.836066 iter 10 value 93.836066 iter 10 value 93.836066 final value 93.836066 converged Fitting Repeat 3 # weights: 507 initial value 106.667034 iter 10 value 94.035088 iter 10 value 94.035088 iter 10 value 94.035088 final value 94.035088 converged Fitting Repeat 4 # weights: 507 initial value 96.148971 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 102.370554 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 109.155915 iter 10 value 94.082599 iter 20 value 93.787436 iter 30 value 88.280868 iter 40 value 87.348310 iter 50 value 85.637191 iter 60 value 85.167047 iter 70 value 85.154142 iter 80 value 85.153296 final value 85.152603 converged Fitting Repeat 2 # weights: 103 initial value 114.756319 iter 10 value 94.060186 iter 20 value 93.934576 iter 30 value 87.675731 iter 40 value 86.232409 iter 50 value 85.517076 iter 60 value 85.180229 iter 70 value 85.153000 final value 85.152603 converged Fitting Repeat 3 # weights: 103 initial value 100.136124 iter 10 value 92.698670 iter 20 value 86.660345 iter 30 value 85.128560 iter 40 value 84.199704 iter 50 value 84.112682 iter 60 value 83.658140 iter 70 value 82.151252 iter 80 value 82.137259 final value 82.137232 converged Fitting Repeat 4 # weights: 103 initial value 104.828988 iter 10 value 93.885573 iter 20 value 90.987730 iter 30 value 89.807187 iter 40 value 83.619158 iter 50 value 82.996695 iter 60 value 82.682097 iter 70 value 82.591465 iter 80 value 82.490404 iter 90 value 82.365165 iter 100 value 82.294515 final value 82.294515 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.246880 iter 10 value 94.129097 iter 20 value 94.036729 iter 30 value 93.809369 iter 40 value 92.125843 iter 50 value 89.030711 iter 60 value 86.847976 iter 70 value 85.553027 iter 80 value 84.950640 iter 90 value 84.946124 final value 84.946118 converged Fitting Repeat 1 # weights: 305 initial value 111.639288 iter 10 value 94.067510 iter 20 value 92.761158 iter 30 value 86.546631 iter 40 value 84.519454 iter 50 value 83.810156 iter 60 value 83.653329 iter 70 value 83.316687 iter 80 value 83.261356 iter 90 value 82.060314 iter 100 value 81.537002 final value 81.537002 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.459986 iter 10 value 94.088029 iter 20 value 93.723302 iter 30 value 93.661389 iter 40 value 92.633179 iter 50 value 86.954155 iter 60 value 86.055538 iter 70 value 85.272271 iter 80 value 84.693452 iter 90 value 81.732111 iter 100 value 81.299157 final value 81.299157 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.462139 iter 10 value 94.038422 iter 20 value 88.125598 iter 30 value 85.252858 iter 40 value 84.242750 iter 50 value 82.879351 iter 60 value 82.533463 iter 70 value 81.511532 iter 80 value 80.810895 iter 90 value 80.657680 iter 100 value 80.587443 final value 80.587443 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 115.568370 iter 10 value 93.931705 iter 20 value 90.662013 iter 30 value 85.771944 iter 40 value 83.972268 iter 50 value 83.578631 iter 60 value 82.594576 iter 70 value 81.658437 iter 80 value 81.470367 iter 90 value 81.300231 iter 100 value 81.178458 final value 81.178458 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.342750 iter 10 value 93.927196 iter 20 value 91.598075 iter 30 value 90.011143 iter 40 value 87.864296 iter 50 value 85.375668 iter 60 value 83.486135 iter 70 value 82.587562 iter 80 value 82.250482 iter 90 value 81.900676 iter 100 value 81.325281 final value 81.325281 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 128.219545 iter 10 value 94.440096 iter 20 value 86.617890 iter 30 value 85.103058 iter 40 value 84.723934 iter 50 value 84.201727 iter 60 value 84.088412 iter 70 value 83.789347 iter 80 value 82.642467 iter 90 value 82.236447 iter 100 value 82.198599 final value 82.198599 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.547545 iter 10 value 94.074444 iter 20 value 89.273375 iter 30 value 87.445607 iter 40 value 84.240600 iter 50 value 82.687338 iter 60 value 82.191434 iter 70 value 81.805497 iter 80 value 81.572961 iter 90 value 81.254705 iter 100 value 81.052861 final value 81.052861 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.210669 iter 10 value 91.143303 iter 20 value 87.384246 iter 30 value 85.241073 iter 40 value 84.773386 iter 50 value 83.074965 iter 60 value 82.871028 iter 70 value 82.687856 iter 80 value 82.594672 iter 90 value 82.499610 iter 100 value 82.455691 final value 82.455691 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.115762 iter 10 value 95.177732 iter 20 value 91.244168 iter 30 value 85.533862 iter 40 value 84.028596 iter 50 value 83.671907 iter 60 value 83.236257 iter 70 value 83.116484 iter 80 value 83.014287 iter 90 value 82.966245 iter 100 value 82.757705 final value 82.757705 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.337566 iter 10 value 94.239022 iter 20 value 93.706436 iter 30 value 85.225352 iter 40 value 84.167647 iter 50 value 83.729661 iter 60 value 83.586257 iter 70 value 82.548917 iter 80 value 82.093624 iter 90 value 82.063309 iter 100 value 82.046899 final value 82.046899 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.010160 iter 10 value 93.901791 iter 20 value 93.900313 iter 30 value 90.793419 iter 40 value 86.353516 iter 50 value 85.933017 final value 85.933008 converged Fitting Repeat 2 # weights: 103 initial value 101.284293 iter 10 value 94.054754 final value 94.052912 converged Fitting Repeat 3 # weights: 103 initial value 106.357315 final value 94.054412 converged Fitting Repeat 4 # weights: 103 initial value 110.847420 final value 94.054746 converged Fitting Repeat 5 # weights: 103 initial value 102.262274 iter 10 value 94.054578 iter 20 value 92.443461 iter 30 value 86.273187 iter 40 value 86.273081 iter 50 value 85.933160 final value 85.933056 converged Fitting Repeat 1 # weights: 305 initial value 102.057221 iter 10 value 94.056954 final value 94.052916 converged Fitting Repeat 2 # weights: 305 initial value 100.581669 iter 10 value 94.057734 iter 20 value 94.052846 iter 30 value 93.607262 final value 93.604633 converged Fitting Repeat 3 # weights: 305 initial value 98.567193 iter 10 value 92.296303 iter 20 value 92.294841 iter 30 value 89.583184 iter 40 value 87.132475 iter 50 value 85.605356 iter 60 value 85.385906 iter 70 value 85.382101 iter 80 value 85.014443 iter 90 value 82.519149 iter 100 value 81.649638 final value 81.649638 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.134473 iter 10 value 93.841825 iter 20 value 93.690954 iter 30 value 87.203180 iter 40 value 86.168268 iter 50 value 86.160963 iter 60 value 85.438489 iter 70 value 84.905880 iter 80 value 84.183158 iter 90 value 83.657487 iter 100 value 83.642307 final value 83.642307 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.549311 iter 10 value 93.841305 iter 20 value 93.837707 final value 93.836477 converged Fitting Repeat 1 # weights: 507 initial value 116.010810 iter 10 value 94.060873 iter 20 value 94.053064 iter 20 value 94.053063 iter 30 value 93.065278 iter 40 value 85.112610 iter 50 value 84.648362 iter 60 value 84.610540 iter 70 value 84.609378 iter 80 value 84.602679 iter 90 value 84.601531 iter 100 value 84.600028 final value 84.600028 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.412585 iter 10 value 94.059697 iter 20 value 92.285041 iter 30 value 85.418100 iter 40 value 85.415021 iter 50 value 84.457869 iter 60 value 82.006913 iter 70 value 81.604855 iter 80 value 81.073770 iter 90 value 80.888402 iter 100 value 80.888284 final value 80.888284 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.775016 final value 94.060890 converged Fitting Repeat 4 # weights: 507 initial value 99.269414 iter 10 value 94.061556 iter 20 value 94.052975 iter 30 value 87.646158 iter 40 value 84.752894 iter 50 value 81.872905 iter 60 value 80.612158 iter 70 value 79.565546 iter 80 value 79.417880 iter 90 value 79.208815 iter 100 value 79.176457 final value 79.176457 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 98.088755 iter 10 value 91.655677 iter 20 value 87.624808 iter 30 value 87.619357 iter 40 value 85.703450 iter 50 value 84.740046 iter 60 value 84.728799 iter 70 value 82.000216 iter 80 value 81.834434 iter 90 value 81.442286 iter 100 value 81.410499 final value 81.410499 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.086626 iter 10 value 86.309449 iter 20 value 85.952094 final value 85.951717 converged Fitting Repeat 2 # weights: 103 initial value 100.224695 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 104.903851 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 104.052558 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.667904 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.318450 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 97.985168 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 95.918798 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 100.332000 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 94.760569 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 113.937676 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 100.564148 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 108.367925 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 98.188603 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 103.151369 iter 10 value 93.064738 iter 20 value 92.811041 iter 30 value 92.715693 final value 92.715463 converged Fitting Repeat 1 # weights: 103 initial value 97.862236 iter 10 value 94.502311 iter 20 value 93.989545 iter 30 value 92.379731 iter 40 value 85.237871 iter 50 value 85.133984 iter 60 value 84.444071 iter 70 value 83.942990 iter 80 value 83.876088 iter 90 value 83.835562 final value 83.835454 converged Fitting Repeat 2 # weights: 103 initial value 100.209213 iter 10 value 93.888341 iter 20 value 89.855131 iter 30 value 87.900565 iter 40 value 85.266138 iter 50 value 84.469645 iter 60 value 84.380427 iter 70 value 84.251129 final value 84.246923 converged Fitting Repeat 3 # weights: 103 initial value 98.236321 iter 10 value 94.506347 iter 20 value 94.414234 iter 30 value 93.973591 iter 40 value 93.960378 iter 50 value 93.603620 iter 60 value 85.962577 iter 70 value 85.356976 iter 80 value 84.105822 iter 90 value 83.915954 iter 100 value 83.838057 final value 83.838057 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.554060 iter 10 value 94.486467 iter 20 value 89.169819 iter 30 value 85.060101 iter 40 value 84.415896 iter 50 value 84.292035 final value 84.288136 converged Fitting Repeat 5 # weights: 103 initial value 99.401366 iter 10 value 94.220978 iter 20 value 85.726477 iter 30 value 84.661774 iter 40 value 83.658025 iter 50 value 83.517166 iter 60 value 83.491072 final value 83.491067 converged Fitting Repeat 1 # weights: 305 initial value 101.721042 iter 10 value 94.417276 iter 20 value 85.181173 iter 30 value 84.379795 iter 40 value 84.140171 iter 50 value 84.037803 iter 60 value 83.927373 iter 70 value 83.629316 iter 80 value 82.241311 iter 90 value 81.893955 iter 100 value 81.788171 final value 81.788171 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.780569 iter 10 value 94.386537 iter 20 value 87.544366 iter 30 value 86.845762 iter 40 value 84.612061 iter 50 value 83.734578 iter 60 value 82.472347 iter 70 value 81.799945 iter 80 value 81.726474 iter 90 value 81.501244 iter 100 value 81.368829 final value 81.368829 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.402516 iter 10 value 93.809296 iter 20 value 89.977253 iter 30 value 89.035610 iter 40 value 84.875789 iter 50 value 83.549302 iter 60 value 83.253476 iter 70 value 83.181815 iter 80 value 83.163335 iter 90 value 82.709320 iter 100 value 81.828073 final value 81.828073 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.656747 iter 10 value 94.352837 iter 20 value 91.410123 iter 30 value 88.682359 iter 40 value 85.292861 iter 50 value 83.332626 iter 60 value 82.932213 iter 70 value 82.776345 iter 80 value 82.452192 iter 90 value 82.311831 iter 100 value 82.294649 final value 82.294649 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.803070 iter 10 value 92.612163 iter 20 value 85.290205 iter 30 value 85.143622 iter 40 value 84.197234 iter 50 value 83.864769 iter 60 value 83.743881 iter 70 value 83.518475 iter 80 value 83.285380 iter 90 value 82.945440 iter 100 value 82.336156 final value 82.336156 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.311421 iter 10 value 94.619741 iter 20 value 93.791270 iter 30 value 91.974093 iter 40 value 89.566326 iter 50 value 85.831348 iter 60 value 83.609781 iter 70 value 82.585920 iter 80 value 81.939661 iter 90 value 81.561679 iter 100 value 81.362609 final value 81.362609 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.034944 iter 10 value 94.494781 iter 20 value 91.208446 iter 30 value 86.913838 iter 40 value 83.654183 iter 50 value 83.229131 iter 60 value 83.043138 iter 70 value 82.743802 iter 80 value 82.722588 iter 90 value 82.634197 iter 100 value 82.174752 final value 82.174752 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.940280 iter 10 value 94.401316 iter 20 value 89.322729 iter 30 value 84.849029 iter 40 value 84.276058 iter 50 value 83.351048 iter 60 value 82.891603 iter 70 value 82.593077 iter 80 value 81.671222 iter 90 value 81.433478 iter 100 value 81.203268 final value 81.203268 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.331211 iter 10 value 97.455125 iter 20 value 89.277976 iter 30 value 86.456399 iter 40 value 85.100369 iter 50 value 83.984592 iter 60 value 83.361992 iter 70 value 82.940409 iter 80 value 82.076294 iter 90 value 81.766311 iter 100 value 81.643265 final value 81.643265 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.102307 iter 10 value 97.511559 iter 20 value 93.777490 iter 30 value 88.779151 iter 40 value 85.213448 iter 50 value 83.806633 iter 60 value 82.256332 iter 70 value 81.458814 iter 80 value 81.276060 iter 90 value 81.178919 iter 100 value 81.077369 final value 81.077369 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.226873 final value 94.485788 converged Fitting Repeat 2 # weights: 103 initial value 104.831383 iter 10 value 93.902531 iter 20 value 84.624604 iter 30 value 82.573041 iter 40 value 82.564207 final value 82.563994 converged Fitting Repeat 3 # weights: 103 initial value 101.867472 final value 94.486021 converged Fitting Repeat 4 # weights: 103 initial value 95.995974 final value 94.485756 converged Fitting Repeat 5 # weights: 103 initial value 97.944548 iter 10 value 94.485868 iter 20 value 94.047382 iter 20 value 94.047381 iter 20 value 94.047381 final value 94.047381 converged Fitting Repeat 1 # weights: 305 initial value 96.305351 iter 10 value 94.359181 iter 20 value 93.859666 iter 30 value 93.728509 iter 40 value 93.725666 final value 93.724965 converged Fitting Repeat 2 # weights: 305 initial value 98.532830 iter 10 value 93.793829 iter 20 value 93.793174 iter 30 value 93.773768 iter 40 value 85.649319 iter 50 value 85.226429 iter 60 value 85.154692 final value 85.154279 converged Fitting Repeat 3 # weights: 305 initial value 98.598728 iter 10 value 94.489340 iter 20 value 94.280969 final value 93.911951 converged Fitting Repeat 4 # weights: 305 initial value 102.917230 iter 10 value 94.488932 iter 20 value 94.470601 iter 30 value 93.876017 iter 40 value 93.216592 iter 50 value 86.595034 final value 86.589702 converged Fitting Repeat 5 # weights: 305 initial value 98.400387 iter 10 value 94.359325 iter 20 value 93.690012 iter 30 value 83.992727 iter 40 value 83.727001 iter 50 value 82.077797 iter 60 value 82.010654 iter 70 value 81.992627 iter 80 value 81.924009 iter 90 value 81.919762 iter 100 value 81.917906 final value 81.917906 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 125.306393 iter 10 value 94.363702 iter 20 value 94.095611 iter 30 value 93.718819 iter 40 value 93.656782 iter 50 value 93.656303 iter 60 value 93.655382 iter 70 value 93.649763 iter 80 value 85.673196 iter 90 value 83.949183 iter 100 value 83.936551 final value 83.936551 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.284110 iter 10 value 91.394973 iter 20 value 84.041803 iter 30 value 84.038696 iter 40 value 84.036755 iter 50 value 83.446775 iter 60 value 83.007628 iter 70 value 82.999230 iter 80 value 82.996488 iter 90 value 82.996361 final value 82.996343 converged Fitting Repeat 3 # weights: 507 initial value 97.031482 iter 10 value 92.533250 iter 20 value 90.272129 iter 30 value 90.247663 iter 40 value 88.958637 iter 50 value 88.111766 iter 60 value 87.053195 iter 70 value 87.007388 iter 80 value 87.006049 iter 90 value 87.004717 final value 87.003131 converged Fitting Repeat 4 # weights: 507 initial value 105.756060 iter 10 value 94.254162 iter 20 value 94.251350 iter 30 value 94.246877 final value 94.246299 converged Fitting Repeat 5 # weights: 507 initial value 96.478630 iter 10 value 94.232172 final value 94.228149 converged Fitting Repeat 1 # weights: 103 initial value 95.805390 iter 10 value 93.164282 iter 10 value 93.164282 iter 10 value 93.164282 final value 93.164282 converged Fitting Repeat 2 # weights: 103 initial value 95.681635 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.571877 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.709560 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.891484 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.925711 iter 10 value 91.294143 iter 20 value 87.988447 iter 30 value 87.755324 iter 40 value 87.576025 iter 50 value 87.559331 iter 60 value 87.525369 iter 70 value 87.280373 iter 80 value 87.154692 iter 80 value 87.154692 iter 80 value 87.154691 final value 87.154691 converged Fitting Repeat 2 # weights: 305 initial value 99.180156 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 103.973087 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 103.554074 final value 94.312038 converged Fitting Repeat 5 # weights: 305 initial value 97.944739 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 106.563490 final value 93.813953 converged Fitting Repeat 2 # weights: 507 initial value 108.901039 iter 10 value 93.772973 iter 10 value 93.772973 iter 10 value 93.772973 final value 93.772973 converged Fitting Repeat 3 # weights: 507 initial value 114.235366 iter 10 value 93.772982 final value 93.772973 converged Fitting Repeat 4 # weights: 507 initial value 95.637500 iter 10 value 90.617115 iter 20 value 86.352068 iter 30 value 84.309815 iter 40 value 84.297954 final value 84.297262 converged Fitting Repeat 5 # weights: 507 initial value 109.416522 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 103.282269 iter 10 value 94.662074 iter 20 value 89.039759 iter 30 value 85.732686 iter 40 value 83.736020 iter 50 value 83.557995 iter 60 value 83.524156 iter 70 value 83.201960 iter 80 value 81.624480 iter 90 value 81.418603 iter 100 value 81.329434 final value 81.329434 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.681083 iter 10 value 94.122054 iter 20 value 91.747985 iter 30 value 85.220958 iter 40 value 84.538669 iter 50 value 83.925262 iter 60 value 82.826967 iter 70 value 81.359078 iter 80 value 81.309081 iter 90 value 81.307446 final value 81.307445 converged Fitting Repeat 3 # weights: 103 initial value 95.818771 iter 10 value 88.606205 iter 20 value 86.202957 iter 30 value 85.412952 iter 40 value 85.064568 iter 50 value 82.717842 iter 60 value 81.408456 iter 70 value 81.315336 final value 81.314848 converged Fitting Repeat 4 # weights: 103 initial value 101.248299 iter 10 value 94.483065 iter 20 value 93.422358 iter 30 value 93.065788 iter 40 value 89.908957 iter 50 value 84.351811 iter 60 value 83.743639 iter 70 value 81.450888 iter 80 value 81.315223 iter 90 value 81.312692 final value 81.312647 converged Fitting Repeat 5 # weights: 103 initial value 105.369564 iter 10 value 94.475539 iter 20 value 92.100694 iter 30 value 88.420583 iter 40 value 88.078489 iter 50 value 84.787190 iter 60 value 84.538975 iter 70 value 84.524817 final value 84.524802 converged Fitting Repeat 1 # weights: 305 initial value 104.338749 iter 10 value 94.492081 iter 20 value 93.416494 iter 30 value 93.231935 iter 40 value 85.865975 iter 50 value 83.273704 iter 60 value 81.619515 iter 70 value 80.536843 iter 80 value 80.008769 iter 90 value 79.893006 iter 100 value 79.782390 final value 79.782390 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.524682 iter 10 value 94.954618 iter 20 value 93.653982 iter 30 value 88.313275 iter 40 value 85.477767 iter 50 value 84.730678 iter 60 value 84.328892 iter 70 value 84.102025 iter 80 value 83.797994 iter 90 value 81.332656 iter 100 value 80.461762 final value 80.461762 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.619785 iter 10 value 94.373514 iter 20 value 86.721945 iter 30 value 85.274481 iter 40 value 84.835571 iter 50 value 84.530413 iter 60 value 84.268964 iter 70 value 82.829434 iter 80 value 81.559920 iter 90 value 81.274240 iter 100 value 80.939524 final value 80.939524 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.745203 iter 10 value 93.424695 iter 20 value 92.771799 iter 30 value 88.835411 iter 40 value 87.412685 iter 50 value 86.666468 iter 60 value 85.248602 iter 70 value 81.791780 iter 80 value 81.073791 iter 90 value 80.626897 iter 100 value 80.376694 final value 80.376694 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.101708 iter 10 value 94.445605 iter 20 value 93.489754 iter 30 value 93.132539 iter 40 value 91.958779 iter 50 value 84.957291 iter 60 value 81.622789 iter 70 value 81.428397 iter 80 value 81.071690 iter 90 value 80.560223 iter 100 value 79.922431 final value 79.922431 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.450411 iter 10 value 94.603869 iter 20 value 93.570548 iter 30 value 86.089400 iter 40 value 84.861589 iter 50 value 82.846739 iter 60 value 81.177171 iter 70 value 80.876908 iter 80 value 80.781323 iter 90 value 80.401268 iter 100 value 79.944156 final value 79.944156 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 143.837515 iter 10 value 95.096721 iter 20 value 93.290544 iter 30 value 86.006368 iter 40 value 84.634423 iter 50 value 84.535146 iter 60 value 84.438575 iter 70 value 84.205875 iter 80 value 83.969570 iter 90 value 82.376689 iter 100 value 81.650923 final value 81.650923 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.132809 iter 10 value 94.486217 iter 20 value 88.003552 iter 30 value 86.947515 iter 40 value 85.804149 iter 50 value 84.146266 iter 60 value 83.889308 iter 70 value 83.780119 iter 80 value 82.919529 iter 90 value 82.323082 iter 100 value 81.644822 final value 81.644822 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 125.197481 iter 10 value 94.492146 iter 20 value 93.293725 iter 30 value 91.762673 iter 40 value 88.700914 iter 50 value 85.575867 iter 60 value 83.150298 iter 70 value 81.554287 iter 80 value 81.108010 iter 90 value 80.653866 iter 100 value 80.483217 final value 80.483217 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.434466 iter 10 value 91.783196 iter 20 value 87.427265 iter 30 value 84.503904 iter 40 value 81.372856 iter 50 value 80.342693 iter 60 value 80.291405 iter 70 value 80.151543 iter 80 value 79.992997 iter 90 value 79.859453 iter 100 value 79.833844 final value 79.833844 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.887774 final value 94.485844 converged Fitting Repeat 2 # weights: 103 initial value 96.294540 final value 94.485916 converged Fitting Repeat 3 # weights: 103 initial value 93.656771 iter 10 value 92.782038 iter 20 value 92.780773 iter 30 value 92.779357 final value 92.779356 converged Fitting Repeat 4 # weights: 103 initial value 97.175683 final value 94.485804 converged Fitting Repeat 5 # weights: 103 initial value 98.574728 final value 94.486168 converged Fitting Repeat 1 # weights: 305 initial value 97.519540 iter 10 value 93.497393 iter 20 value 93.169545 iter 30 value 92.784309 iter 40 value 92.783010 iter 50 value 92.780615 iter 60 value 92.779979 final value 92.779915 converged Fitting Repeat 2 # weights: 305 initial value 96.482008 iter 10 value 94.166086 iter 20 value 93.778741 iter 30 value 93.435275 iter 40 value 92.795842 iter 50 value 92.765582 iter 60 value 92.758699 iter 70 value 92.758381 iter 70 value 92.758381 iter 70 value 92.758381 final value 92.758381 converged Fitting Repeat 3 # weights: 305 initial value 109.083807 iter 10 value 94.487392 iter 20 value 94.474103 iter 30 value 86.245905 iter 40 value 85.889372 iter 50 value 85.879154 final value 85.879132 converged Fitting Repeat 4 # weights: 305 initial value 106.187889 iter 10 value 93.115437 iter 20 value 89.516586 iter 30 value 86.121612 iter 40 value 86.114476 iter 40 value 86.114476 final value 86.114476 converged Fitting Repeat 5 # weights: 305 initial value 125.556214 iter 10 value 93.778272 iter 20 value 93.776725 iter 30 value 93.065555 iter 40 value 93.024225 iter 50 value 92.817991 iter 60 value 89.071023 iter 70 value 85.526867 iter 80 value 85.251397 iter 90 value 85.251188 final value 85.251012 converged Fitting Repeat 1 # weights: 507 initial value 99.933551 iter 10 value 94.491718 iter 20 value 94.484284 final value 94.484241 converged Fitting Repeat 2 # weights: 507 initial value 101.332266 iter 10 value 94.493046 iter 20 value 94.395170 iter 30 value 85.517800 iter 40 value 84.044214 iter 50 value 83.944839 iter 60 value 83.931700 iter 70 value 83.270673 iter 80 value 83.207132 iter 90 value 83.197415 iter 100 value 83.197152 final value 83.197152 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.381965 iter 10 value 94.490219 iter 20 value 87.476625 final value 86.334605 converged Fitting Repeat 4 # weights: 507 initial value 100.558588 iter 10 value 93.781258 iter 20 value 93.780280 iter 30 value 92.862690 iter 40 value 92.094946 iter 50 value 87.275189 iter 60 value 86.258303 iter 70 value 86.223312 iter 80 value 86.222524 iter 90 value 85.937898 iter 100 value 85.310350 final value 85.310350 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.858293 iter 10 value 93.028412 iter 20 value 91.384222 iter 30 value 91.278293 iter 40 value 91.276275 iter 50 value 90.045905 iter 60 value 89.475456 iter 70 value 83.817612 iter 80 value 81.169680 iter 90 value 81.001632 iter 100 value 80.425994 final value 80.425994 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 123.709895 iter 10 value 117.895370 iter 20 value 117.875745 iter 30 value 117.870400 iter 40 value 117.867151 iter 50 value 117.850632 iter 60 value 115.431481 iter 70 value 115.128916 iter 80 value 110.450088 iter 90 value 109.467182 iter 100 value 108.534094 final value 108.534094 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 154.243380 iter 10 value 117.894812 iter 20 value 117.890325 final value 117.890309 converged Fitting Repeat 3 # weights: 305 initial value 119.131545 iter 10 value 117.763433 iter 20 value 117.483608 iter 30 value 117.457133 iter 40 value 117.455592 iter 50 value 117.445082 final value 117.445010 converged Fitting Repeat 4 # weights: 305 initial value 120.818823 iter 10 value 117.894832 iter 20 value 117.346478 iter 30 value 108.531201 iter 40 value 108.506942 iter 50 value 108.432933 iter 60 value 108.432152 iter 70 value 108.175499 iter 80 value 107.087435 iter 90 value 107.085284 iter 100 value 107.084837 final value 107.084837 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 123.837271 iter 10 value 115.992566 iter 20 value 108.546316 iter 30 value 108.338275 iter 40 value 108.336778 iter 50 value 106.530442 iter 60 value 106.018203 iter 70 value 106.015144 final value 106.011542 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Dec 29 00:36:40 2022 *********************************************** Number of test functions: 8 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures Number of test functions: 8 Number of errors: 0 Number of failures: 0 Warning messages: 1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0. ℹ Use `.name_repair = "minimal"`. ℹ The deprecated feature was likely used in the tibble package. Please report the issue at <https://github.com/tidyverse/tibble/issues>. 2: `repeats` has no meaning for this resampling method. 3: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 36.43 1.70 38.86
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 25.22 | 1.40 | 26.81 | |
FreqInteractors | 0.19 | 0.03 | 0.22 | |
calculateAAC | 0.05 | 0.00 | 0.05 | |
calculateAutocor | 0.28 | 0.08 | 0.35 | |
calculateBE | 0.14 | 0.02 | 0.16 | |
calculateCTDC | 0.08 | 0.00 | 0.08 | |
calculateCTDD | 0.64 | 0.06 | 0.70 | |
calculateCTDT | 0.22 | 0.00 | 0.22 | |
calculateCTriad | 0.22 | 0.08 | 0.30 | |
calculateDC | 0.07 | 0.00 | 0.08 | |
calculateF | 0.29 | 0.00 | 0.28 | |
calculateKSAAP | 0.04 | 0.03 | 0.08 | |
calculateQD_Sm | 1.16 | 0.08 | 1.23 | |
calculateTC | 1.26 | 0.08 | 1.34 | |
calculateTC_Sm | 0.18 | 0.01 | 0.19 | |
corr_plot | 25.67 | 0.75 | 26.42 | |
enrichfindP | 0.37 | 0.05 | 7.53 | |
enrichfind_hp | 0.03 | 0.01 | 0.80 | |
enrichplot | 0.27 | 0.00 | 0.27 | |
filter_missing_values | 0.00 | 0.02 | 0.01 | |
getFASTA | 0.02 | 0.00 | 2.52 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.04 | 0.01 | 0.08 | |
pred_ensembel | 11.61 | 0.40 | 8.56 | |
var_imp | 26.88 | 0.82 | 27.72 | |