| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2025-12-23 11:35 -0500 (Tue, 23 Dec 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" | 4878 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" | 4593 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 996/2332 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.17.1 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | WARNINGS | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | WARNINGS | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.17.1 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz |
| StartedAt: 2025-12-22 20:20:37 -0500 (Mon, 22 Dec 2025) |
| EndedAt: 2025-12-22 20:24:05 -0500 (Mon, 22 Dec 2025) |
| EllapsedTime: 207.7 seconds |
| RetCode: 0 |
| Status: WARNINGS |
| CheckDir: HPiP.Rcheck |
| Warnings: 1 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
Code: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
FALSE, filename = "plots.pdf")
Docs: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
TRUE, filename = "plots.pdf")
Mismatches in argument default values:
Name: 'plots' Code: FALSE Docs: TRUE
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 19.034 0.944 20.628
corr_plot 18.914 0.919 20.387
var_imp 18.574 0.962 20.645
pred_ensembel 6.496 0.143 6.341
enrichfindP 0.194 0.038 14.209
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 WARNING, 2 NOTEs
See
‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.17.1’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 102.027726
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.082691
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 102.502686
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.671350
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 107.707251
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 95.426489
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 94.815241
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 95.547827
final value 94.275362
converged
Fitting Repeat 4
# weights: 305
initial value 102.657945
final value 94.275362
converged
Fitting Repeat 5
# weights: 305
initial value 102.975917
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 107.841110
final value 94.275362
converged
Fitting Repeat 2
# weights: 507
initial value 95.148012
final value 94.046703
converged
Fitting Repeat 3
# weights: 507
initial value 113.442333
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 111.707980
final value 94.275362
converged
Fitting Repeat 5
# weights: 507
initial value 103.989922
iter 10 value 94.484212
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 99.317164
iter 10 value 94.334272
iter 20 value 93.132516
iter 30 value 93.071179
iter 40 value 88.640262
iter 50 value 87.549763
iter 60 value 87.075051
iter 70 value 87.055554
iter 80 value 86.986937
iter 90 value 85.088545
iter 100 value 84.380337
final value 84.380337
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 100.612574
iter 10 value 94.602638
iter 20 value 94.485599
iter 30 value 89.126833
iter 40 value 88.427751
iter 50 value 85.984347
iter 60 value 85.290585
iter 70 value 85.201379
final value 85.201352
converged
Fitting Repeat 3
# weights: 103
initial value 97.696791
iter 10 value 94.477966
iter 20 value 90.232387
iter 30 value 88.802958
iter 40 value 88.568758
iter 50 value 87.805628
iter 60 value 85.857036
iter 70 value 85.409250
iter 80 value 85.058035
iter 90 value 83.519557
iter 100 value 82.887497
final value 82.887497
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.912545
iter 10 value 90.305753
iter 20 value 85.856111
iter 30 value 85.540801
iter 40 value 84.259764
iter 50 value 84.139046
iter 60 value 84.033137
iter 70 value 83.893008
iter 80 value 83.886749
iter 90 value 83.831492
iter 100 value 83.557189
final value 83.557189
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 110.167281
iter 10 value 93.960029
iter 20 value 92.859141
iter 30 value 84.962761
iter 40 value 84.614106
iter 50 value 84.586862
iter 60 value 84.476522
iter 70 value 84.382867
iter 80 value 84.363666
final value 84.363656
converged
Fitting Repeat 1
# weights: 305
initial value 108.443874
iter 10 value 94.408661
iter 20 value 90.775827
iter 30 value 86.846839
iter 40 value 84.757732
iter 50 value 84.195216
iter 60 value 83.669718
iter 70 value 82.825880
iter 80 value 82.132281
iter 90 value 81.884479
iter 100 value 81.851602
final value 81.851602
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 114.722848
iter 10 value 94.568547
iter 20 value 94.504965
iter 30 value 94.369247
iter 40 value 89.189318
iter 50 value 86.928699
iter 60 value 85.875854
iter 70 value 84.469321
iter 80 value 84.341040
iter 90 value 84.298717
iter 100 value 84.075640
final value 84.075640
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.140254
iter 10 value 94.488303
iter 20 value 94.293368
iter 30 value 90.947008
iter 40 value 90.333859
iter 50 value 84.516861
iter 60 value 83.634358
iter 70 value 83.486498
iter 80 value 83.457890
iter 90 value 83.278256
iter 100 value 83.009442
final value 83.009442
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.468022
iter 10 value 94.488874
iter 20 value 94.369428
iter 30 value 89.476451
iter 40 value 86.705036
iter 50 value 85.461139
iter 60 value 82.926926
iter 70 value 82.337133
iter 80 value 82.008645
iter 90 value 81.620847
iter 100 value 81.525314
final value 81.525314
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.653150
iter 10 value 89.917754
iter 20 value 85.246032
iter 30 value 84.875199
iter 40 value 84.460971
iter 50 value 84.135059
iter 60 value 83.937019
iter 70 value 83.850115
iter 80 value 83.505081
iter 90 value 82.555902
iter 100 value 82.191544
final value 82.191544
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 131.477997
iter 10 value 94.801514
iter 20 value 94.439882
iter 30 value 87.739826
iter 40 value 86.431125
iter 50 value 85.543943
iter 60 value 84.099813
iter 70 value 82.778942
iter 80 value 82.595828
iter 90 value 82.472424
iter 100 value 81.930953
final value 81.930953
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 144.692901
iter 10 value 94.502130
iter 20 value 88.428631
iter 30 value 85.858950
iter 40 value 85.563347
iter 50 value 85.013561
iter 60 value 83.737587
iter 70 value 82.904683
iter 80 value 82.330887
iter 90 value 82.197685
iter 100 value 81.748392
final value 81.748392
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.924693
iter 10 value 94.597883
iter 20 value 87.319380
iter 30 value 84.510271
iter 40 value 83.869237
iter 50 value 83.388118
iter 60 value 83.116390
iter 70 value 82.830378
iter 80 value 82.361031
iter 90 value 81.657309
iter 100 value 81.275480
final value 81.275480
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.041761
iter 10 value 94.445293
iter 20 value 87.028011
iter 30 value 85.681248
iter 40 value 85.115248
iter 50 value 84.318251
iter 60 value 83.565184
iter 70 value 83.154432
iter 80 value 82.351756
iter 90 value 81.887276
iter 100 value 81.428025
final value 81.428025
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 119.844139
iter 10 value 94.509419
iter 20 value 94.323646
iter 30 value 93.142361
iter 40 value 90.459492
iter 50 value 86.935301
iter 60 value 85.854427
iter 70 value 84.710164
iter 80 value 83.322859
iter 90 value 82.721504
iter 100 value 82.463875
final value 82.463875
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.243275
final value 94.048458
converged
Fitting Repeat 2
# weights: 103
initial value 96.255975
final value 94.485782
converged
Fitting Repeat 3
# weights: 103
initial value 101.773272
final value 94.485689
converged
Fitting Repeat 4
# weights: 103
initial value 96.880543
final value 94.485955
converged
Fitting Repeat 5
# weights: 103
initial value 96.522290
iter 10 value 94.277028
iter 20 value 94.275745
iter 30 value 94.275555
final value 94.275537
converged
Fitting Repeat 1
# weights: 305
initial value 97.353317
iter 10 value 94.489362
iter 20 value 89.106120
iter 30 value 87.791117
iter 40 value 87.040900
iter 50 value 86.366083
iter 60 value 86.278915
iter 70 value 86.108820
iter 80 value 86.107356
final value 86.106248
converged
Fitting Repeat 2
# weights: 305
initial value 94.930085
iter 10 value 94.280624
iter 20 value 94.276926
iter 30 value 90.748879
iter 40 value 86.653863
iter 50 value 85.934348
iter 60 value 85.913319
final value 85.911091
converged
Fitting Repeat 3
# weights: 305
initial value 107.814622
iter 10 value 92.664399
iter 20 value 92.663507
iter 30 value 92.182704
iter 40 value 92.094570
iter 50 value 92.094313
iter 60 value 92.093367
iter 70 value 92.056985
iter 80 value 91.962476
iter 90 value 90.389293
iter 100 value 85.745593
final value 85.745593
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.288668
iter 10 value 94.485816
iter 20 value 94.428794
iter 30 value 93.899299
iter 40 value 93.860724
final value 93.860632
converged
Fitting Repeat 5
# weights: 305
initial value 95.486529
iter 10 value 94.051946
iter 20 value 87.280956
final value 86.864391
converged
Fitting Repeat 1
# weights: 507
initial value 107.110519
iter 10 value 94.492847
iter 20 value 94.484223
iter 30 value 85.273169
iter 40 value 85.197853
final value 85.197320
converged
Fitting Repeat 2
# weights: 507
initial value 98.716964
iter 10 value 86.930948
iter 20 value 85.384756
iter 30 value 84.154301
iter 40 value 83.161996
iter 50 value 83.159970
iter 60 value 82.934009
iter 70 value 82.782691
iter 80 value 82.779955
iter 90 value 82.543735
iter 100 value 80.934647
final value 80.934647
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 100.857714
iter 10 value 94.490921
iter 20 value 94.470054
iter 30 value 86.786736
iter 40 value 86.229175
iter 50 value 86.184195
iter 60 value 86.183689
iter 70 value 86.080282
iter 80 value 84.054719
iter 90 value 83.362214
iter 100 value 83.306316
final value 83.306316
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 102.531544
iter 10 value 94.490323
iter 20 value 93.524012
iter 30 value 92.242580
iter 30 value 92.242579
final value 92.242575
converged
Fitting Repeat 5
# weights: 507
initial value 98.401268
iter 10 value 94.283824
iter 20 value 94.276041
final value 94.275550
converged
Fitting Repeat 1
# weights: 103
initial value 97.570310
iter 10 value 93.825846
final value 93.809648
converged
Fitting Repeat 2
# weights: 103
initial value 99.035458
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 107.040976
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 115.535160
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.217353
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 108.784190
iter 10 value 89.478950
final value 87.309035
converged
Fitting Repeat 2
# weights: 305
initial value 104.719471
final value 94.484212
converged
Fitting Repeat 3
# weights: 305
initial value 105.930739
iter 10 value 93.614472
iter 20 value 93.394097
final value 93.394090
converged
Fitting Repeat 4
# weights: 305
initial value 99.850640
iter 10 value 94.301132
iter 20 value 94.292215
final value 94.292210
converged
Fitting Repeat 5
# weights: 305
initial value 95.685972
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 114.308276
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 97.700243
final value 94.354396
converged
Fitting Repeat 3
# weights: 507
initial value 96.980403
final value 94.317413
converged
Fitting Repeat 4
# weights: 507
initial value 96.239918
iter 10 value 94.102373
final value 94.088890
converged
Fitting Repeat 5
# weights: 507
initial value 111.218548
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 102.387876
iter 10 value 94.489248
iter 20 value 90.687325
iter 30 value 87.555978
iter 40 value 86.810561
iter 50 value 86.622567
iter 60 value 82.283196
iter 70 value 81.244882
iter 80 value 81.175561
final value 81.170276
converged
Fitting Repeat 2
# weights: 103
initial value 99.941175
iter 10 value 94.225267
iter 20 value 93.729262
iter 30 value 93.237425
iter 40 value 88.887147
iter 50 value 86.969977
iter 60 value 82.656311
iter 70 value 82.198400
iter 80 value 82.074567
final value 82.074554
converged
Fitting Repeat 3
# weights: 103
initial value 101.822969
iter 10 value 94.795918
iter 20 value 94.467202
iter 30 value 90.751381
iter 40 value 87.927972
iter 50 value 87.492110
iter 60 value 87.083451
iter 70 value 83.072792
iter 80 value 81.258000
iter 90 value 79.811967
iter 100 value 79.257882
final value 79.257882
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 101.034238
iter 10 value 94.438194
iter 20 value 93.459443
iter 30 value 92.611056
iter 40 value 83.003879
iter 50 value 82.389691
iter 60 value 82.259163
iter 70 value 81.440959
iter 80 value 81.178345
final value 81.170278
converged
Fitting Repeat 5
# weights: 103
initial value 102.701697
iter 10 value 94.486441
final value 94.486424
converged
Fitting Repeat 1
# weights: 305
initial value 100.163456
iter 10 value 94.426931
iter 20 value 89.897554
iter 30 value 83.471562
iter 40 value 81.318039
iter 50 value 79.695371
iter 60 value 78.285390
iter 70 value 78.069587
iter 80 value 77.980964
iter 90 value 77.752184
iter 100 value 77.601929
final value 77.601929
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.346894
iter 10 value 95.281251
iter 20 value 93.691611
iter 30 value 90.118034
iter 40 value 88.174114
iter 50 value 86.549805
iter 60 value 85.913327
iter 70 value 85.281927
iter 80 value 83.590198
iter 90 value 80.971404
iter 100 value 79.539890
final value 79.539890
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.335375
iter 10 value 94.341120
iter 20 value 86.082768
iter 30 value 83.538236
iter 40 value 80.643190
iter 50 value 78.832212
iter 60 value 78.540623
iter 70 value 78.050824
iter 80 value 77.535927
iter 90 value 77.311396
iter 100 value 77.147025
final value 77.147025
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.211345
iter 10 value 94.080056
iter 20 value 86.904835
iter 30 value 86.473981
iter 40 value 84.220179
iter 50 value 82.698068
iter 60 value 82.022084
iter 70 value 80.301022
iter 80 value 79.608424
iter 90 value 78.579490
iter 100 value 78.359662
final value 78.359662
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.623682
iter 10 value 94.556989
iter 20 value 94.503546
iter 30 value 93.812814
iter 40 value 88.329244
iter 50 value 83.997701
iter 60 value 82.198680
iter 70 value 81.712997
iter 80 value 80.643227
iter 90 value 79.491364
iter 100 value 79.375825
final value 79.375825
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 143.232212
iter 10 value 94.863525
iter 20 value 85.398082
iter 30 value 82.951891
iter 40 value 81.461696
iter 50 value 80.436769
iter 60 value 80.053681
iter 70 value 79.182174
iter 80 value 77.726299
iter 90 value 77.234571
iter 100 value 77.152341
final value 77.152341
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 113.528319
iter 10 value 88.185539
iter 20 value 84.140506
iter 30 value 82.023113
iter 40 value 79.584348
iter 50 value 78.928096
iter 60 value 78.414996
iter 70 value 78.061368
iter 80 value 77.974674
iter 90 value 77.897200
iter 100 value 77.754991
final value 77.754991
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 118.365985
iter 10 value 94.310733
iter 20 value 83.953837
iter 30 value 82.481536
iter 40 value 82.000402
iter 50 value 79.785419
iter 60 value 78.917528
iter 70 value 78.695936
iter 80 value 77.907262
iter 90 value 77.692066
iter 100 value 77.653316
final value 77.653316
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 114.822447
iter 10 value 93.782253
iter 20 value 91.326871
iter 30 value 88.707649
iter 40 value 87.687238
iter 50 value 82.216011
iter 60 value 81.139914
iter 70 value 79.227818
iter 80 value 78.197657
iter 90 value 77.640750
iter 100 value 77.580309
final value 77.580309
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.400887
iter 10 value 95.846122
iter 20 value 91.797128
iter 30 value 87.739776
iter 40 value 86.921927
iter 50 value 86.313519
iter 60 value 85.991985
iter 70 value 81.788943
iter 80 value 81.191275
iter 90 value 81.106705
iter 100 value 80.955903
final value 80.955903
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.688179
final value 94.485592
converged
Fitting Repeat 2
# weights: 103
initial value 97.976155
iter 10 value 94.356388
iter 20 value 94.355583
final value 94.354665
converged
Fitting Repeat 3
# weights: 103
initial value 100.675508
iter 10 value 94.438504
iter 20 value 94.431843
iter 30 value 94.090228
final value 94.090169
converged
Fitting Repeat 4
# weights: 103
initial value 97.973967
final value 94.485781
converged
Fitting Repeat 5
# weights: 103
initial value 106.645130
final value 94.485791
converged
Fitting Repeat 1
# weights: 305
initial value 98.600999
iter 10 value 94.488204
iter 20 value 94.365085
iter 30 value 94.354838
iter 40 value 94.354490
iter 50 value 85.638241
iter 60 value 81.922890
iter 70 value 81.905213
iter 80 value 81.877244
iter 90 value 81.875945
iter 100 value 81.875725
final value 81.875725
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.070961
iter 10 value 94.488876
iter 20 value 94.429305
iter 30 value 82.603150
iter 40 value 82.561968
iter 50 value 82.561739
iter 60 value 82.266947
iter 70 value 82.263526
iter 80 value 82.263021
iter 90 value 82.262813
iter 100 value 82.244899
final value 82.244899
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.718187
iter 10 value 94.491516
iter 20 value 94.128448
iter 30 value 93.661821
iter 40 value 93.659568
iter 40 value 93.659568
final value 93.659565
converged
Fitting Repeat 4
# weights: 305
initial value 99.709888
iter 10 value 94.359969
iter 20 value 94.270433
iter 30 value 93.641684
iter 30 value 93.641683
iter 30 value 93.641683
final value 93.641683
converged
Fitting Repeat 5
# weights: 305
initial value 107.109960
iter 10 value 94.489185
iter 20 value 94.295143
iter 30 value 93.667515
iter 40 value 93.584252
final value 93.583688
converged
Fitting Repeat 1
# weights: 507
initial value 100.178062
iter 10 value 94.362512
iter 20 value 94.179227
iter 30 value 83.652039
iter 40 value 80.223789
iter 50 value 76.425360
iter 60 value 76.364112
iter 70 value 76.363481
iter 80 value 76.360720
iter 90 value 76.337263
iter 100 value 76.210648
final value 76.210648
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 99.975284
iter 10 value 94.172106
iter 20 value 94.170904
iter 30 value 94.166247
iter 40 value 87.212688
iter 50 value 81.009675
iter 60 value 80.549161
iter 70 value 80.526481
iter 80 value 80.181048
final value 80.180936
converged
Fitting Repeat 3
# weights: 507
initial value 110.101944
iter 10 value 93.293844
iter 20 value 93.288535
iter 30 value 93.165045
iter 40 value 90.474301
iter 50 value 81.474562
iter 60 value 77.820241
iter 70 value 77.749635
iter 80 value 77.651451
iter 90 value 77.413359
final value 77.412226
converged
Fitting Repeat 4
# weights: 507
initial value 116.144362
iter 10 value 94.320241
iter 20 value 94.313475
final value 94.313034
converged
Fitting Repeat 5
# weights: 507
initial value 97.026774
iter 10 value 89.316418
iter 20 value 84.865343
iter 30 value 84.834263
iter 40 value 84.826574
iter 50 value 81.531607
iter 60 value 81.148778
iter 70 value 81.106799
iter 80 value 81.079120
iter 90 value 81.077500
iter 100 value 81.075146
final value 81.075146
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.871437
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 95.105037
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.896831
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 99.872364
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 103.124084
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 100.109938
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 96.813072
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 96.454807
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 99.753186
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 95.913184
iter 10 value 94.052910
iter 10 value 94.052910
iter 10 value 94.052910
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 98.141244
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 132.007010
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 107.546877
iter 10 value 93.257640
final value 93.257143
converged
Fitting Repeat 4
# weights: 507
initial value 94.227912
iter 10 value 88.955492
iter 20 value 88.606087
final value 88.606061
converged
Fitting Repeat 5
# weights: 507
initial value 109.520223
iter 10 value 94.038252
iter 10 value 94.038252
iter 10 value 94.038252
final value 94.038252
converged
Fitting Repeat 1
# weights: 103
initial value 97.876852
iter 10 value 94.045824
iter 20 value 90.928887
iter 30 value 90.355314
iter 40 value 89.994427
iter 50 value 89.975240
final value 89.974881
converged
Fitting Repeat 2
# weights: 103
initial value 96.975882
iter 10 value 93.408497
iter 20 value 86.883046
iter 30 value 86.124300
iter 40 value 85.986395
iter 50 value 85.891234
iter 60 value 85.229550
iter 70 value 85.041140
final value 85.041118
converged
Fitting Repeat 3
# weights: 103
initial value 115.956222
iter 10 value 93.777288
iter 20 value 88.964587
iter 30 value 88.033862
iter 40 value 87.707454
iter 50 value 87.579633
iter 60 value 87.025179
iter 70 value 86.750053
iter 80 value 86.596504
iter 90 value 86.568088
final value 86.568016
converged
Fitting Repeat 4
# weights: 103
initial value 100.074475
iter 10 value 93.776498
iter 20 value 87.020625
iter 30 value 86.058502
iter 40 value 85.427369
iter 50 value 85.099637
final value 85.089405
converged
Fitting Repeat 5
# weights: 103
initial value 99.360378
iter 10 value 92.795410
iter 20 value 89.935131
iter 30 value 89.439360
iter 40 value 87.867472
iter 50 value 86.999551
iter 60 value 86.343392
iter 70 value 86.322943
iter 80 value 86.193038
final value 86.182521
converged
Fitting Repeat 1
# weights: 305
initial value 101.026337
iter 10 value 94.138536
iter 20 value 93.661148
iter 30 value 90.066667
iter 40 value 86.738583
iter 50 value 85.360777
iter 60 value 84.098108
iter 70 value 83.720833
iter 80 value 83.441272
iter 90 value 83.266213
iter 100 value 83.063173
final value 83.063173
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.262407
iter 10 value 94.002171
iter 20 value 88.358126
iter 30 value 85.662790
iter 40 value 85.189659
iter 50 value 85.100669
iter 60 value 84.467688
iter 70 value 83.718074
iter 80 value 83.552965
iter 90 value 83.406607
iter 100 value 83.316074
final value 83.316074
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.783782
iter 10 value 94.345264
iter 20 value 92.019392
iter 30 value 90.280811
iter 40 value 89.882972
iter 50 value 89.838120
iter 60 value 88.925531
iter 70 value 86.020244
iter 80 value 84.540773
iter 90 value 83.591953
iter 100 value 83.455393
final value 83.455393
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.542596
iter 10 value 94.057700
iter 20 value 88.655251
iter 30 value 87.687277
iter 40 value 84.283634
iter 50 value 83.484015
iter 60 value 82.480205
iter 70 value 82.204362
iter 80 value 82.152635
iter 90 value 82.121635
iter 100 value 82.082252
final value 82.082252
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.091749
iter 10 value 91.519368
iter 20 value 87.865501
iter 30 value 87.570479
iter 40 value 86.965451
iter 50 value 85.106464
iter 60 value 83.625068
iter 70 value 83.399573
iter 80 value 83.247160
iter 90 value 82.982877
iter 100 value 82.939694
final value 82.939694
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 144.288766
iter 10 value 95.567799
iter 20 value 94.064216
iter 30 value 91.034041
iter 40 value 90.613563
iter 50 value 88.271195
iter 60 value 87.165112
iter 70 value 82.989733
iter 80 value 82.002369
iter 90 value 81.460208
iter 100 value 81.336361
final value 81.336361
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 107.274025
iter 10 value 94.132785
iter 20 value 93.646222
iter 30 value 92.548478
iter 40 value 91.358801
iter 50 value 90.605839
iter 60 value 87.903796
iter 70 value 86.559641
iter 80 value 86.092820
iter 90 value 85.570094
iter 100 value 84.334876
final value 84.334876
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 120.851038
iter 10 value 95.283388
iter 20 value 93.283985
iter 30 value 92.421708
iter 40 value 91.735227
iter 50 value 88.278521
iter 60 value 84.782272
iter 70 value 84.184455
iter 80 value 83.829383
iter 90 value 83.160661
iter 100 value 82.765563
final value 82.765563
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 123.444919
iter 10 value 94.079341
iter 20 value 91.460429
iter 30 value 87.917805
iter 40 value 85.914667
iter 50 value 84.900718
iter 60 value 84.616219
iter 70 value 83.132297
iter 80 value 82.730025
iter 90 value 82.231844
iter 100 value 81.747009
final value 81.747009
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.996046
iter 10 value 93.345847
iter 20 value 90.976539
iter 30 value 89.823213
iter 40 value 85.765384
iter 50 value 84.937503
iter 60 value 83.653351
iter 70 value 83.180837
iter 80 value 82.484155
iter 90 value 82.143800
iter 100 value 81.970610
final value 81.970610
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.028162
final value 94.054678
converged
Fitting Repeat 2
# weights: 103
initial value 94.983024
final value 94.054478
converged
Fitting Repeat 3
# weights: 103
initial value 94.700383
final value 94.039967
converged
Fitting Repeat 4
# weights: 103
initial value 94.848449
iter 10 value 94.054359
iter 20 value 94.034500
iter 30 value 85.894044
final value 85.864501
converged
Fitting Repeat 5
# weights: 103
initial value 95.280507
final value 94.054461
converged
Fitting Repeat 1
# weights: 305
initial value 104.777823
iter 10 value 94.057927
iter 20 value 94.047487
iter 30 value 93.448838
iter 40 value 87.869497
iter 50 value 87.852985
iter 60 value 87.833048
iter 70 value 87.722591
iter 80 value 87.715637
iter 90 value 87.715087
iter 100 value 87.713228
final value 87.713228
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.994397
iter 10 value 94.057772
iter 20 value 94.051040
iter 30 value 93.496188
iter 40 value 90.610204
iter 50 value 90.471631
iter 60 value 90.469428
iter 70 value 90.469308
iter 70 value 90.469308
final value 90.469308
converged
Fitting Repeat 3
# weights: 305
initial value 102.613347
iter 10 value 94.089186
iter 20 value 94.081301
iter 30 value 93.857728
iter 40 value 90.909843
iter 50 value 90.795147
iter 60 value 90.779136
iter 70 value 90.695943
iter 80 value 90.651977
iter 90 value 90.651281
iter 100 value 90.650131
final value 90.650131
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 120.912506
iter 10 value 91.990233
iter 20 value 91.864060
final value 91.863857
converged
Fitting Repeat 5
# weights: 305
initial value 96.890833
iter 10 value 94.057628
iter 20 value 94.051793
iter 30 value 92.098523
iter 40 value 91.030626
iter 50 value 91.030168
iter 60 value 88.145911
iter 70 value 87.823444
final value 87.822903
converged
Fitting Repeat 1
# weights: 507
initial value 105.653957
iter 10 value 92.686320
iter 20 value 92.682387
iter 30 value 91.807777
iter 40 value 91.802681
iter 50 value 91.801110
iter 60 value 91.798269
iter 70 value 91.604951
iter 80 value 91.503305
iter 90 value 90.210392
iter 100 value 89.516880
final value 89.516880
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 94.594676
iter 10 value 94.037442
iter 20 value 94.011726
iter 30 value 86.202426
iter 40 value 83.699175
iter 50 value 83.633548
iter 60 value 83.346852
iter 70 value 82.770873
iter 80 value 82.102996
iter 90 value 81.965867
final value 81.958557
converged
Fitting Repeat 3
# weights: 507
initial value 101.041188
iter 10 value 89.654560
iter 20 value 89.443372
iter 30 value 89.414707
iter 40 value 88.406419
iter 50 value 87.679359
iter 60 value 87.374185
final value 87.370617
converged
Fitting Repeat 4
# weights: 507
initial value 108.937881
iter 10 value 94.061773
iter 20 value 93.585070
iter 30 value 92.263290
iter 40 value 90.690777
iter 50 value 89.834022
iter 60 value 89.832911
iter 70 value 88.475402
iter 80 value 88.469052
final value 88.468051
converged
Fitting Repeat 5
# weights: 507
initial value 115.614033
iter 10 value 93.298517
iter 20 value 91.564804
iter 30 value 87.227273
iter 40 value 87.226943
final value 87.226602
converged
Fitting Repeat 1
# weights: 103
initial value 94.981938
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 95.596481
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.242285
iter 10 value 93.328427
final value 93.328261
converged
Fitting Repeat 4
# weights: 103
initial value 96.571354
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 94.209909
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 96.251275
iter 10 value 93.328422
final value 93.328261
converged
Fitting Repeat 2
# weights: 305
initial value 95.611066
final value 94.052913
converged
Fitting Repeat 3
# weights: 305
initial value 95.591290
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 95.746647
final value 92.933333
converged
Fitting Repeat 5
# weights: 305
initial value 94.927181
iter 10 value 85.168304
iter 20 value 83.796214
iter 30 value 82.000071
iter 40 value 81.900396
iter 50 value 81.860492
iter 60 value 81.859991
iter 60 value 81.859991
iter 60 value 81.859991
final value 81.859991
converged
Fitting Repeat 1
# weights: 507
initial value 124.452926
final value 94.052448
converged
Fitting Repeat 2
# weights: 507
initial value 99.381878
iter 10 value 93.188603
final value 93.188588
converged
Fitting Repeat 3
# weights: 507
initial value 113.793364
iter 10 value 93.328304
final value 93.328261
converged
Fitting Repeat 4
# weights: 507
initial value 109.312785
final value 93.324697
converged
Fitting Repeat 5
# weights: 507
initial value 99.440411
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 108.217865
iter 10 value 93.787516
iter 20 value 86.795850
iter 30 value 85.726980
iter 40 value 85.463963
iter 50 value 84.954840
iter 60 value 84.866988
final value 84.863755
converged
Fitting Repeat 2
# weights: 103
initial value 104.980876
iter 10 value 94.055165
iter 20 value 93.166801
iter 30 value 92.656720
iter 40 value 87.456901
iter 50 value 84.340830
iter 60 value 82.727455
iter 70 value 82.340771
iter 80 value 82.302396
final value 82.302314
converged
Fitting Repeat 3
# weights: 103
initial value 99.030442
iter 10 value 94.057755
iter 20 value 91.647535
iter 30 value 84.823585
iter 40 value 83.848984
iter 50 value 82.821685
iter 60 value 82.539112
iter 70 value 82.507094
iter 80 value 82.377542
iter 90 value 82.319875
final value 82.319789
converged
Fitting Repeat 4
# weights: 103
initial value 100.938772
iter 10 value 94.050484
iter 20 value 88.991824
iter 30 value 85.833017
iter 40 value 84.816020
iter 50 value 83.921329
iter 60 value 83.097197
iter 70 value 82.932882
final value 82.932752
converged
Fitting Repeat 5
# weights: 103
initial value 96.218728
iter 10 value 93.673387
iter 20 value 92.635927
iter 30 value 88.674183
iter 40 value 86.559017
iter 50 value 86.416316
iter 60 value 84.405772
iter 70 value 83.841001
iter 80 value 83.700906
iter 90 value 83.588051
final value 83.573710
converged
Fitting Repeat 1
# weights: 305
initial value 111.943765
iter 10 value 94.351875
iter 20 value 88.486888
iter 30 value 82.947873
iter 40 value 81.076296
iter 50 value 80.210349
iter 60 value 79.218713
iter 70 value 78.933595
iter 80 value 78.665528
iter 90 value 78.628733
iter 100 value 78.605733
final value 78.605733
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 112.504012
iter 10 value 93.845466
iter 20 value 91.817124
iter 30 value 85.774372
iter 40 value 83.875958
iter 50 value 82.992366
iter 60 value 80.028836
iter 70 value 79.217180
iter 80 value 79.128989
iter 90 value 79.069659
iter 100 value 79.011713
final value 79.011713
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 117.230732
iter 10 value 93.970716
iter 20 value 92.298765
iter 30 value 84.978189
iter 40 value 82.160592
iter 50 value 81.035634
iter 60 value 79.986593
iter 70 value 79.495562
iter 80 value 79.384946
iter 90 value 79.275831
iter 100 value 79.212494
final value 79.212494
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.226688
iter 10 value 88.695609
iter 20 value 86.777367
iter 30 value 84.003582
iter 40 value 81.399895
iter 50 value 80.131056
iter 60 value 79.950392
iter 70 value 79.882750
iter 80 value 79.757844
iter 90 value 79.670377
iter 100 value 79.216178
final value 79.216178
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 133.956289
iter 10 value 93.589568
iter 20 value 91.486715
iter 30 value 86.627502
iter 40 value 83.391760
iter 50 value 82.198052
iter 60 value 79.189170
iter 70 value 79.085097
iter 80 value 79.066616
iter 90 value 79.044507
iter 100 value 79.009969
final value 79.009969
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 118.796238
iter 10 value 93.608755
iter 20 value 82.712849
iter 30 value 80.288420
iter 40 value 80.073307
iter 50 value 79.841760
iter 60 value 79.642662
iter 70 value 79.453950
iter 80 value 78.857187
iter 90 value 78.714040
iter 100 value 78.621214
final value 78.621214
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.613323
iter 10 value 93.718121
iter 20 value 87.820015
iter 30 value 85.558978
iter 40 value 82.036053
iter 50 value 80.560457
iter 60 value 80.040662
iter 70 value 79.531007
iter 80 value 79.339087
iter 90 value 78.718938
iter 100 value 78.591662
final value 78.591662
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.579059
iter 10 value 93.866308
iter 20 value 90.011734
iter 30 value 83.472379
iter 40 value 81.754020
iter 50 value 81.049504
iter 60 value 80.558547
iter 70 value 80.464063
iter 80 value 80.291376
iter 90 value 80.255078
iter 100 value 80.209990
final value 80.209990
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.703462
iter 10 value 95.626315
iter 20 value 87.598058
iter 30 value 84.962318
iter 40 value 81.231452
iter 50 value 79.652571
iter 60 value 79.078547
iter 70 value 78.812205
iter 80 value 78.663699
iter 90 value 78.644586
iter 100 value 78.598025
final value 78.598025
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.405394
iter 10 value 94.628334
iter 20 value 92.432795
iter 30 value 91.463084
iter 40 value 91.128859
iter 50 value 90.847896
iter 60 value 86.963264
iter 70 value 84.371602
iter 80 value 82.567244
iter 90 value 81.487799
iter 100 value 81.096216
final value 81.096216
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.939304
final value 94.054603
converged
Fitting Repeat 2
# weights: 103
initial value 103.657825
final value 94.054643
converged
Fitting Repeat 3
# weights: 103
initial value 96.782759
iter 10 value 92.938481
iter 20 value 92.935739
iter 30 value 92.923831
final value 92.923791
converged
Fitting Repeat 4
# weights: 103
initial value 99.145381
final value 94.054768
converged
Fitting Repeat 5
# weights: 103
initial value 104.529255
final value 94.054719
converged
Fitting Repeat 1
# weights: 305
initial value 101.103660
iter 10 value 93.339023
iter 20 value 86.562591
iter 30 value 86.380403
iter 40 value 86.379927
iter 50 value 86.377216
iter 60 value 86.007105
iter 70 value 85.784134
iter 80 value 85.231164
iter 90 value 85.179626
iter 100 value 85.177432
final value 85.177432
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.419913
iter 10 value 94.057658
iter 20 value 92.905289
iter 30 value 84.023161
iter 40 value 83.936242
iter 50 value 82.637496
iter 60 value 82.629433
iter 70 value 82.618014
iter 80 value 82.607673
iter 90 value 82.607376
iter 100 value 82.042819
final value 82.042819
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.957101
iter 10 value 93.333612
iter 20 value 93.330380
iter 30 value 89.537326
iter 40 value 84.677342
iter 50 value 84.666812
iter 60 value 84.657671
iter 70 value 84.653606
iter 80 value 84.648977
iter 90 value 84.342392
iter 100 value 82.109070
final value 82.109070
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 111.066854
iter 10 value 94.057568
iter 20 value 93.510027
final value 93.329472
converged
Fitting Repeat 5
# weights: 305
initial value 99.110594
iter 10 value 94.057727
iter 20 value 93.791580
final value 93.535433
converged
Fitting Repeat 1
# weights: 507
initial value 129.990923
iter 10 value 92.864946
iter 20 value 92.768108
iter 30 value 92.708198
iter 40 value 92.707353
iter 50 value 92.704243
final value 92.131596
converged
Fitting Repeat 2
# weights: 507
initial value 95.799808
iter 10 value 94.060686
iter 20 value 94.028080
iter 30 value 85.000277
iter 40 value 82.384091
iter 50 value 81.193450
iter 60 value 80.841310
iter 60 value 80.841310
final value 80.841310
converged
Fitting Repeat 3
# weights: 507
initial value 101.100141
iter 10 value 93.354094
iter 20 value 93.334167
iter 30 value 91.358267
iter 40 value 84.657367
iter 50 value 84.457140
iter 60 value 84.077431
iter 70 value 84.076554
final value 84.076523
converged
Fitting Repeat 4
# weights: 507
initial value 97.613095
iter 10 value 93.336871
iter 20 value 93.329240
iter 30 value 92.708998
iter 40 value 92.393564
iter 50 value 89.539020
iter 60 value 86.202101
iter 70 value 84.520673
iter 80 value 84.440054
iter 90 value 84.288575
iter 100 value 84.198474
final value 84.198474
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.812117
iter 10 value 94.030918
iter 20 value 93.387176
iter 30 value 85.328084
iter 40 value 83.173857
iter 50 value 82.901419
iter 60 value 82.863322
iter 70 value 82.535635
iter 80 value 82.387037
iter 90 value 82.386597
final value 82.386571
converged
Fitting Repeat 1
# weights: 103
initial value 114.471739
final value 94.466823
converged
Fitting Repeat 2
# weights: 103
initial value 98.105662
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 111.070641
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 96.363945
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.395316
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 95.607592
final value 94.466823
converged
Fitting Repeat 2
# weights: 305
initial value 101.159989
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 113.787506
final value 94.466823
converged
Fitting Repeat 4
# weights: 305
initial value 97.689396
iter 10 value 94.263155
final value 94.263148
converged
Fitting Repeat 5
# weights: 305
initial value 96.142310
iter 10 value 94.483894
iter 20 value 94.468946
final value 94.466823
converged
Fitting Repeat 1
# weights: 507
initial value 95.300518
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 98.237860
iter 10 value 93.621691
final value 93.606161
converged
Fitting Repeat 3
# weights: 507
initial value 107.394541
iter 10 value 93.358402
final value 93.350441
converged
Fitting Repeat 4
# weights: 507
initial value 100.646793
final value 94.129871
converged
Fitting Repeat 5
# weights: 507
initial value 97.468409
final value 93.567525
converged
Fitting Repeat 1
# weights: 103
initial value 107.613362
iter 10 value 94.510865
iter 20 value 94.468750
iter 30 value 86.737132
iter 40 value 84.273883
iter 50 value 83.778149
iter 60 value 83.774160
final value 83.774157
converged
Fitting Repeat 2
# weights: 103
initial value 96.807685
iter 10 value 94.695139
iter 20 value 94.483994
iter 30 value 94.245238
iter 40 value 87.540545
iter 50 value 85.913015
iter 60 value 84.814433
final value 84.810397
converged
Fitting Repeat 3
# weights: 103
initial value 103.471642
iter 10 value 94.491623
iter 20 value 94.020394
iter 30 value 93.894803
iter 40 value 93.738759
iter 50 value 92.353896
iter 60 value 83.841550
iter 70 value 83.113437
iter 80 value 82.397787
iter 90 value 82.219340
iter 100 value 80.448232
final value 80.448232
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 101.729022
iter 10 value 85.745937
iter 20 value 84.286226
iter 30 value 83.510226
iter 40 value 83.381726
iter 50 value 83.333414
iter 60 value 83.312711
final value 83.312671
converged
Fitting Repeat 5
# weights: 103
initial value 97.434633
iter 10 value 94.486897
iter 20 value 93.692052
iter 30 value 92.898821
iter 40 value 88.511829
iter 50 value 86.025189
iter 60 value 83.238036
iter 70 value 83.029120
iter 80 value 81.839353
iter 90 value 81.178203
iter 100 value 80.579220
final value 80.579220
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 112.193796
iter 10 value 94.576788
iter 20 value 93.138791
iter 30 value 92.610897
iter 40 value 91.876828
iter 50 value 85.994155
iter 60 value 80.892499
iter 70 value 80.662128
iter 80 value 80.304803
iter 90 value 80.063517
iter 100 value 79.547667
final value 79.547667
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.652946
iter 10 value 93.850575
iter 20 value 86.787704
iter 30 value 83.306167
iter 40 value 82.531655
iter 50 value 81.437364
iter 60 value 80.605293
iter 70 value 80.328281
iter 80 value 80.207869
iter 90 value 80.111297
iter 100 value 79.859215
final value 79.859215
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.858659
iter 10 value 94.680711
iter 20 value 88.580675
iter 30 value 86.643679
iter 40 value 84.478230
iter 50 value 83.345689
iter 60 value 82.489056
iter 70 value 81.691572
iter 80 value 80.749462
iter 90 value 80.423890
iter 100 value 80.287133
final value 80.287133
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.796714
iter 10 value 94.659314
iter 20 value 90.299186
iter 30 value 85.556406
iter 40 value 85.207105
iter 50 value 84.344280
iter 60 value 82.872765
iter 70 value 80.136728
iter 80 value 79.110535
iter 90 value 78.968581
iter 100 value 78.777879
final value 78.777879
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 110.859085
iter 10 value 94.481038
iter 20 value 94.011994
iter 30 value 87.297089
iter 40 value 85.810563
iter 50 value 84.937823
iter 60 value 82.991535
iter 70 value 82.292836
iter 80 value 81.758694
iter 90 value 81.650020
iter 100 value 81.531687
final value 81.531687
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 138.514259
iter 10 value 94.565467
iter 20 value 93.931896
iter 30 value 88.752086
iter 40 value 85.148010
iter 50 value 83.855523
iter 60 value 82.614651
iter 70 value 82.318965
iter 80 value 82.135110
iter 90 value 81.156802
iter 100 value 79.945222
final value 79.945222
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.015086
iter 10 value 89.804808
iter 20 value 85.279214
iter 30 value 84.905611
iter 40 value 83.692698
iter 50 value 81.029612
iter 60 value 80.225465
iter 70 value 79.842037
iter 80 value 79.579036
iter 90 value 79.459761
iter 100 value 79.338949
final value 79.338949
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.797786
iter 10 value 92.875482
iter 20 value 85.532821
iter 30 value 83.848913
iter 40 value 82.770890
iter 50 value 81.828519
iter 60 value 81.039831
iter 70 value 80.769606
iter 80 value 80.528973
iter 90 value 80.300461
iter 100 value 79.939350
final value 79.939350
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.861772
iter 10 value 94.588331
iter 20 value 86.593318
iter 30 value 85.314308
iter 40 value 84.766834
iter 50 value 83.697093
iter 60 value 83.263689
iter 70 value 81.642273
iter 80 value 81.313306
iter 90 value 80.983862
iter 100 value 80.325517
final value 80.325517
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 120.510022
iter 10 value 93.876980
iter 20 value 84.431875
iter 30 value 82.144219
iter 40 value 81.552627
iter 50 value 81.303296
iter 60 value 81.203480
iter 70 value 81.071630
iter 80 value 81.058595
iter 90 value 80.375557
iter 100 value 79.899367
final value 79.899367
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 104.049003
final value 94.485648
converged
Fitting Repeat 2
# weights: 103
initial value 98.874918
final value 94.485752
converged
Fitting Repeat 3
# weights: 103
initial value 97.234578
final value 94.485787
converged
Fitting Repeat 4
# weights: 103
initial value 100.701678
iter 10 value 93.458446
iter 20 value 93.352327
iter 30 value 93.350799
final value 93.350684
converged
Fitting Repeat 5
# weights: 103
initial value 96.188685
iter 10 value 94.468700
iter 20 value 94.156675
iter 30 value 85.828939
iter 40 value 82.361923
iter 50 value 82.282687
iter 60 value 82.279943
final value 82.279691
converged
Fitting Repeat 1
# weights: 305
initial value 113.553507
iter 10 value 94.489881
iter 20 value 94.184473
iter 30 value 93.610646
iter 40 value 88.463037
iter 50 value 88.021926
iter 60 value 87.216766
iter 70 value 86.618868
iter 80 value 86.031306
iter 90 value 86.019368
final value 86.016604
converged
Fitting Repeat 2
# weights: 305
initial value 109.899785
iter 10 value 94.489583
iter 20 value 94.311670
iter 30 value 84.900929
iter 40 value 84.777423
iter 50 value 84.748500
iter 60 value 84.725773
iter 70 value 84.722704
iter 80 value 84.003708
iter 90 value 80.917299
iter 100 value 80.069284
final value 80.069284
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.404212
iter 10 value 94.488939
iter 20 value 94.484372
final value 94.484356
converged
Fitting Repeat 4
# weights: 305
initial value 98.395081
iter 10 value 94.489131
final value 94.467084
converged
Fitting Repeat 5
# weights: 305
initial value 106.688268
iter 10 value 94.471365
iter 20 value 94.235199
iter 30 value 85.976535
iter 40 value 84.924633
iter 40 value 84.924633
iter 40 value 84.924632
final value 84.924632
converged
Fitting Repeat 1
# weights: 507
initial value 95.684421
iter 10 value 94.474577
iter 20 value 94.181777
iter 30 value 82.104624
iter 40 value 81.816437
iter 50 value 81.792193
final value 81.791861
converged
Fitting Repeat 2
# weights: 507
initial value 104.924833
iter 10 value 94.492361
iter 20 value 84.870340
iter 30 value 82.493366
iter 40 value 80.174476
iter 50 value 80.162920
iter 60 value 80.160851
iter 70 value 80.157761
final value 80.156925
converged
Fitting Repeat 3
# weights: 507
initial value 111.895333
iter 10 value 94.461688
iter 20 value 94.441480
iter 30 value 94.440621
iter 40 value 93.939415
iter 50 value 93.876172
iter 60 value 93.549222
iter 70 value 93.520468
iter 80 value 93.508414
iter 90 value 93.319974
final value 93.309939
converged
Fitting Repeat 4
# weights: 507
initial value 118.317292
iter 10 value 94.492627
iter 20 value 94.383713
iter 30 value 93.558805
final value 93.558487
converged
Fitting Repeat 5
# weights: 507
initial value 122.322345
iter 10 value 94.493197
iter 20 value 94.309688
iter 30 value 87.559614
iter 40 value 85.295184
iter 50 value 85.294223
iter 60 value 85.243251
iter 70 value 85.242356
iter 80 value 84.777916
iter 90 value 84.725814
iter 100 value 84.725415
final value 84.725415
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 158.123498
iter 10 value 117.894459
iter 20 value 117.767441
iter 30 value 117.743588
iter 40 value 117.620737
iter 50 value 117.511417
iter 60 value 117.502015
final value 117.500027
converged
Fitting Repeat 2
# weights: 507
initial value 138.978161
iter 10 value 117.106069
iter 20 value 117.096051
iter 30 value 116.113229
iter 40 value 110.320618
iter 50 value 104.720777
iter 60 value 101.232093
iter 70 value 99.458665
iter 80 value 99.078110
iter 90 value 98.856056
iter 100 value 98.776022
final value 98.776022
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 132.289035
iter 10 value 117.119656
iter 20 value 117.106506
iter 30 value 117.027961
iter 40 value 107.038690
iter 50 value 104.292610
iter 60 value 104.281361
iter 70 value 104.281119
final value 104.279908
converged
Fitting Repeat 4
# weights: 507
initial value 127.464170
iter 10 value 117.877999
iter 20 value 114.718266
iter 30 value 109.806665
iter 40 value 109.587345
iter 50 value 109.582381
iter 50 value 109.582381
final value 109.582381
converged
Fitting Repeat 5
# weights: 507
initial value 125.484429
iter 10 value 117.897714
iter 20 value 117.635733
iter 30 value 117.080496
iter 40 value 116.873131
final value 116.862059
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Mon Dec 22 20:24:00 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
19.942 0.472 72.932
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 19.034 | 0.944 | 20.628 | |
| FreqInteractors | 0.163 | 0.013 | 0.179 | |
| calculateAAC | 0.013 | 0.002 | 0.016 | |
| calculateAutocor | 0.125 | 0.035 | 0.172 | |
| calculateCTDC | 0.035 | 0.004 | 0.040 | |
| calculateCTDD | 0.157 | 0.010 | 0.169 | |
| calculateCTDT | 0.060 | 0.010 | 0.069 | |
| calculateCTriad | 0.156 | 0.018 | 0.180 | |
| calculateDC | 0.030 | 0.004 | 0.034 | |
| calculateF | 0.110 | 0.003 | 0.119 | |
| calculateKSAAP | 0.032 | 0.003 | 0.036 | |
| calculateQD_Sm | 0.804 | 0.079 | 1.096 | |
| calculateTC | 0.550 | 0.075 | 0.648 | |
| calculateTC_Sm | 0.123 | 0.015 | 0.146 | |
| corr_plot | 18.914 | 0.919 | 20.387 | |
| enrichfindP | 0.194 | 0.038 | 14.209 | |
| enrichfind_hp | 0.016 | 0.003 | 0.849 | |
| enrichplot | 0.173 | 0.012 | 0.191 | |
| filter_missing_values | 0 | 0 | 0 | |
| getFASTA | 0.031 | 0.006 | 3.409 | |
| getHPI | 0.000 | 0.000 | 0.001 | |
| get_negativePPI | 0 | 0 | 0 | |
| get_positivePPI | 0.001 | 0.001 | 0.000 | |
| impute_missing_data | 0.000 | 0.000 | 0.001 | |
| plotPPI | 0.037 | 0.002 | 0.040 | |
| pred_ensembel | 6.496 | 0.143 | 6.341 | |
| var_imp | 18.574 | 0.962 | 20.645 | |