| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2025-12-23 11:35 -0500 (Tue, 23 Dec 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" | 4878 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" | 4593 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 996/2332 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.17.1 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | WARNINGS | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | WARNINGS | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.17.1 |
| Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings HPiP_1.17.1.tar.gz |
| StartedAt: 2025-12-23 00:09:57 -0500 (Tue, 23 Dec 2025) |
| EndedAt: 2025-12-23 00:25:19 -0500 (Tue, 23 Dec 2025) |
| EllapsedTime: 922.3 seconds |
| RetCode: 0 |
| Status: WARNINGS |
| CheckDir: HPiP.Rcheck |
| Warnings: 1 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-10-20 r88955)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
Code: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
FALSE, filename = "plots.pdf")
Docs: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
TRUE, filename = "plots.pdf")
Mismatches in argument default values:
Name: 'plots' Code: FALSE Docs: TRUE
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
corr_plot 34.152 0.345 34.583
var_imp 33.433 0.404 33.837
FSmethod 32.637 0.602 33.322
pred_ensembel 12.623 0.100 11.374
enrichfindP 0.610 0.036 12.790
getFASTA 0.355 0.007 6.660
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: 1 WARNING, 2 NOTEs
See
‘/home/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.17.1’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 103.016115
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.976479
final value 94.275362
converged
Fitting Repeat 3
# weights: 103
initial value 97.713114
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.260387
iter 10 value 93.843845
iter 20 value 93.773594
final value 93.772973
converged
Fitting Repeat 5
# weights: 103
initial value 101.713625
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 95.644510
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 96.749361
final value 94.275362
converged
Fitting Repeat 3
# weights: 305
initial value 96.544381
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 97.741697
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 116.106432
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 103.307094
iter 10 value 94.376480
iter 20 value 92.471354
final value 91.891034
converged
Fitting Repeat 2
# weights: 507
initial value 94.241996
iter 10 value 89.191733
iter 20 value 88.387296
iter 30 value 88.381283
final value 88.381265
converged
Fitting Repeat 3
# weights: 507
initial value 97.465749
final value 94.275362
converged
Fitting Repeat 4
# weights: 507
initial value 106.021928
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 117.637670
iter 10 value 93.607310
final value 93.607287
converged
Fitting Repeat 1
# weights: 103
initial value 97.506145
iter 10 value 94.482275
iter 20 value 93.229683
iter 30 value 85.984995
iter 40 value 85.440428
iter 50 value 85.354259
iter 60 value 85.113654
iter 70 value 84.135055
iter 80 value 83.693213
iter 90 value 83.624569
iter 100 value 83.609840
final value 83.609840
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 102.913032
iter 10 value 93.920740
iter 20 value 92.568182
iter 30 value 88.218347
iter 40 value 88.031546
iter 50 value 85.446225
iter 60 value 85.403808
iter 70 value 85.279192
iter 80 value 83.174095
iter 90 value 82.362943
iter 100 value 82.340079
final value 82.340079
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.629894
iter 10 value 94.589163
iter 20 value 94.456941
iter 30 value 93.803293
iter 40 value 93.765678
iter 50 value 93.420633
iter 60 value 89.605921
iter 70 value 85.033192
iter 80 value 84.774888
iter 90 value 84.539715
iter 100 value 83.934671
final value 83.934671
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 101.583436
iter 10 value 94.488656
iter 20 value 94.249868
iter 30 value 93.208463
iter 40 value 86.278393
iter 50 value 84.476330
iter 60 value 83.938286
iter 70 value 83.733396
iter 80 value 83.621360
iter 90 value 83.573771
final value 83.573766
converged
Fitting Repeat 5
# weights: 103
initial value 103.956683
iter 10 value 94.487806
iter 20 value 93.797418
iter 30 value 93.771925
iter 40 value 93.760081
iter 50 value 89.763334
iter 60 value 86.957446
iter 70 value 86.587754
iter 80 value 85.622815
iter 90 value 85.266758
iter 100 value 85.127419
final value 85.127419
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 107.807536
iter 10 value 94.422331
iter 20 value 89.902841
iter 30 value 88.860352
iter 40 value 86.239815
iter 50 value 84.280573
iter 60 value 82.342507
iter 70 value 81.655790
iter 80 value 81.272936
iter 90 value 81.186000
iter 100 value 81.062883
final value 81.062883
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.815388
iter 10 value 94.656779
iter 20 value 93.719267
iter 30 value 92.718764
iter 40 value 88.015639
iter 50 value 87.463188
iter 60 value 87.227660
iter 70 value 86.573344
iter 80 value 83.903564
iter 90 value 82.149606
iter 100 value 81.560098
final value 81.560098
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 113.452702
iter 10 value 96.593788
iter 20 value 93.819603
iter 30 value 92.301115
iter 40 value 89.228461
iter 50 value 85.175762
iter 60 value 84.265571
iter 70 value 83.836380
iter 80 value 83.541299
iter 90 value 82.594905
iter 100 value 81.860924
final value 81.860924
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.803386
iter 10 value 93.341871
iter 20 value 86.306859
iter 30 value 84.635386
iter 40 value 83.607849
iter 50 value 83.023737
iter 60 value 81.911963
iter 70 value 81.361330
iter 80 value 80.970828
iter 90 value 80.762166
iter 100 value 80.684912
final value 80.684912
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.909352
iter 10 value 94.559028
iter 20 value 94.048725
iter 30 value 89.343915
iter 40 value 84.341059
iter 50 value 83.421955
iter 60 value 83.143520
iter 70 value 83.094396
iter 80 value 82.700662
iter 90 value 82.434920
iter 100 value 82.045533
final value 82.045533
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.862841
iter 10 value 94.803095
iter 20 value 87.209862
iter 30 value 86.503127
iter 40 value 85.386123
iter 50 value 84.807823
iter 60 value 83.081625
iter 70 value 82.080657
iter 80 value 81.473930
iter 90 value 81.204448
iter 100 value 81.167155
final value 81.167155
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.286417
iter 10 value 94.467920
iter 20 value 93.743054
iter 30 value 89.770452
iter 40 value 86.825023
iter 50 value 85.841528
iter 60 value 84.139676
iter 70 value 82.426772
iter 80 value 81.906570
iter 90 value 81.673696
iter 100 value 81.389609
final value 81.389609
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.190828
iter 10 value 93.517142
iter 20 value 86.991960
iter 30 value 85.008168
iter 40 value 82.826980
iter 50 value 82.543012
iter 60 value 82.382502
iter 70 value 82.115788
iter 80 value 81.678743
iter 90 value 81.017543
iter 100 value 80.814569
final value 80.814569
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.124752
iter 10 value 94.172196
iter 20 value 89.338301
iter 30 value 85.910308
iter 40 value 84.725498
iter 50 value 83.084432
iter 60 value 81.413953
iter 70 value 81.050306
iter 80 value 80.930456
iter 90 value 80.845437
iter 100 value 80.765508
final value 80.765508
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.310937
iter 10 value 94.584710
iter 20 value 91.996717
iter 30 value 89.986634
iter 40 value 85.559770
iter 50 value 83.449911
iter 60 value 82.930587
iter 70 value 82.382299
iter 80 value 82.026076
iter 90 value 81.639375
iter 100 value 81.499855
final value 81.499855
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 122.011412
iter 10 value 94.485986
final value 94.484221
converged
Fitting Repeat 2
# weights: 103
initial value 95.661309
final value 94.485912
converged
Fitting Repeat 3
# weights: 103
initial value 94.624062
final value 94.485591
converged
Fitting Repeat 4
# weights: 103
initial value 107.136220
iter 10 value 94.276730
iter 10 value 94.276729
iter 10 value 94.276729
final value 94.276729
converged
Fitting Repeat 5
# weights: 103
initial value 101.165247
final value 94.485930
converged
Fitting Repeat 1
# weights: 305
initial value 99.966701
iter 10 value 94.190398
iter 20 value 94.186977
iter 30 value 93.640361
iter 40 value 93.619847
iter 50 value 93.618942
iter 60 value 93.607988
iter 70 value 90.623046
iter 80 value 88.272300
iter 90 value 85.595369
iter 100 value 83.650827
final value 83.650827
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 98.409473
iter 10 value 94.488552
iter 20 value 94.481336
iter 30 value 88.575958
iter 40 value 87.913178
iter 50 value 85.209639
iter 60 value 81.883256
iter 70 value 81.315912
iter 80 value 81.278467
iter 90 value 81.254475
iter 100 value 81.182501
final value 81.182501
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 96.231050
iter 10 value 94.488601
iter 20 value 94.448650
iter 30 value 86.536722
iter 40 value 86.036030
iter 50 value 86.034988
final value 86.034739
converged
Fitting Repeat 4
# weights: 305
initial value 103.179241
iter 10 value 94.489157
iter 20 value 94.483162
final value 94.275447
converged
Fitting Repeat 5
# weights: 305
initial value 97.932245
iter 10 value 94.480942
iter 20 value 94.280359
iter 30 value 94.279084
iter 40 value 94.267476
iter 50 value 92.312403
iter 60 value 92.241710
iter 70 value 91.702721
iter 80 value 91.546040
iter 90 value 91.259162
final value 91.259135
converged
Fitting Repeat 1
# weights: 507
initial value 104.759993
iter 10 value 94.491431
iter 20 value 91.929413
iter 30 value 90.774224
iter 40 value 83.734126
final value 83.724069
converged
Fitting Repeat 2
# weights: 507
initial value 95.687504
iter 10 value 94.467671
iter 20 value 93.713503
iter 30 value 86.813792
iter 40 value 83.981298
iter 50 value 83.806961
iter 60 value 82.161156
iter 70 value 81.627694
iter 80 value 81.601037
iter 90 value 81.592192
iter 90 value 81.592191
final value 81.592191
converged
Fitting Repeat 3
# weights: 507
initial value 118.499935
iter 10 value 94.492156
iter 20 value 94.449732
iter 30 value 86.209629
iter 40 value 84.638984
iter 50 value 83.067685
iter 60 value 82.692928
iter 70 value 82.674438
iter 80 value 82.622678
final value 82.619869
converged
Fitting Repeat 4
# weights: 507
initial value 105.195513
iter 10 value 94.298522
iter 20 value 94.282227
iter 30 value 94.276140
iter 40 value 86.436517
iter 50 value 82.881721
iter 60 value 82.687372
iter 70 value 82.657938
iter 80 value 82.646921
final value 82.646193
converged
Fitting Repeat 5
# weights: 507
initial value 113.097832
iter 10 value 94.493124
iter 20 value 94.485324
iter 30 value 94.135235
iter 40 value 86.260905
iter 50 value 85.254756
iter 60 value 85.225271
final value 85.225131
converged
Fitting Repeat 1
# weights: 103
initial value 99.784032
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 103.847690
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.522898
final value 94.046703
converged
Fitting Repeat 4
# weights: 103
initial value 95.436203
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 105.982916
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 119.272506
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 104.783694
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 99.235656
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 99.648897
iter 10 value 93.991378
final value 93.991342
converged
Fitting Repeat 5
# weights: 305
initial value 99.837144
final value 94.046703
converged
Fitting Repeat 1
# weights: 507
initial value 101.247047
iter 10 value 94.019093
iter 10 value 94.019093
iter 10 value 94.019093
final value 94.019093
converged
Fitting Repeat 2
# weights: 507
initial value 100.076370
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 96.147613
final value 93.589492
converged
Fitting Repeat 4
# weights: 507
initial value 105.089758
final value 93.991342
converged
Fitting Repeat 5
# weights: 507
initial value 116.561342
iter 10 value 94.076202
iter 20 value 82.871797
iter 30 value 82.159662
iter 40 value 81.761631
iter 50 value 81.761332
iter 50 value 81.761332
iter 50 value 81.761332
final value 81.761332
converged
Fitting Repeat 1
# weights: 103
initial value 98.844604
iter 10 value 93.955394
iter 20 value 88.515539
iter 30 value 84.220496
iter 40 value 83.931106
iter 50 value 82.785742
iter 60 value 82.564373
final value 82.539189
converged
Fitting Repeat 2
# weights: 103
initial value 101.386078
iter 10 value 94.414653
iter 20 value 94.147167
iter 30 value 94.144313
iter 40 value 94.008879
iter 50 value 87.550909
iter 60 value 85.327697
iter 70 value 83.874735
iter 80 value 83.397229
iter 90 value 83.058512
final value 83.035409
converged
Fitting Repeat 3
# weights: 103
initial value 108.741490
iter 10 value 94.487010
iter 20 value 94.311497
iter 30 value 93.285880
iter 40 value 93.145581
iter 50 value 93.135997
iter 60 value 93.035616
iter 70 value 90.763881
iter 80 value 88.537966
iter 90 value 84.195147
iter 100 value 83.657991
final value 83.657991
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.277627
iter 10 value 94.969263
iter 20 value 92.346660
iter 30 value 84.468693
iter 40 value 83.890956
iter 50 value 83.313027
iter 60 value 82.661877
iter 70 value 82.539212
final value 82.539189
converged
Fitting Repeat 5
# weights: 103
initial value 105.610481
iter 10 value 93.023878
iter 20 value 83.557925
iter 30 value 83.106876
iter 40 value 82.876619
iter 50 value 82.797598
iter 60 value 82.778363
final value 82.778361
converged
Fitting Repeat 1
# weights: 305
initial value 106.855486
iter 10 value 94.329323
iter 20 value 93.226479
iter 30 value 93.077422
iter 40 value 88.008966
iter 50 value 83.511576
iter 60 value 82.348167
iter 70 value 81.116953
iter 80 value 80.867045
iter 90 value 80.742081
iter 100 value 80.680171
final value 80.680171
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.844901
iter 10 value 94.126271
iter 20 value 88.451399
iter 30 value 86.377357
iter 40 value 86.014372
iter 50 value 85.382011
iter 60 value 81.815678
iter 70 value 80.547586
iter 80 value 80.422119
iter 90 value 80.250142
iter 100 value 79.929464
final value 79.929464
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.647352
iter 10 value 94.518229
iter 20 value 91.623495
iter 30 value 86.365533
iter 40 value 85.211646
iter 50 value 83.983200
iter 60 value 82.955557
iter 70 value 82.153963
iter 80 value 81.032335
iter 90 value 80.686202
iter 100 value 80.519387
final value 80.519387
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.680976
iter 10 value 94.583965
iter 20 value 93.807533
iter 30 value 93.702464
iter 40 value 91.301818
iter 50 value 84.972092
iter 60 value 82.708814
iter 70 value 82.298828
iter 80 value 81.280076
iter 90 value 80.365890
iter 100 value 80.179338
final value 80.179338
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.513786
iter 10 value 94.779693
iter 20 value 89.734725
iter 30 value 88.304501
iter 40 value 86.449670
iter 50 value 83.355463
iter 60 value 82.508807
iter 70 value 82.319884
final value 82.301623
converged
Fitting Repeat 1
# weights: 507
initial value 107.856755
iter 10 value 94.166595
iter 20 value 85.269455
iter 30 value 84.885087
iter 40 value 84.494599
iter 50 value 82.965242
iter 60 value 82.512106
iter 70 value 82.361768
iter 80 value 82.178002
iter 90 value 81.819847
iter 100 value 80.828696
final value 80.828696
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 110.954206
iter 10 value 92.660120
iter 20 value 86.735807
iter 30 value 86.262471
iter 40 value 86.167693
iter 50 value 85.275469
iter 60 value 82.186494
iter 70 value 82.047550
iter 80 value 81.690913
iter 90 value 81.521598
iter 100 value 81.337455
final value 81.337455
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.055554
iter 10 value 94.665958
iter 20 value 94.125001
iter 30 value 92.306421
iter 40 value 88.219275
iter 50 value 83.685048
iter 60 value 83.032205
iter 70 value 82.588042
iter 80 value 82.339215
iter 90 value 81.616853
iter 100 value 80.486379
final value 80.486379
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 115.066836
iter 10 value 94.745122
iter 20 value 86.720208
iter 30 value 84.146657
iter 40 value 83.040612
iter 50 value 82.514431
iter 60 value 81.379949
iter 70 value 81.083766
iter 80 value 80.337252
iter 90 value 79.968173
iter 100 value 79.935225
final value 79.935225
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 120.732170
iter 10 value 89.038114
iter 20 value 85.029917
iter 30 value 84.654158
iter 40 value 81.934905
iter 50 value 81.011295
iter 60 value 80.509156
iter 70 value 80.295144
iter 80 value 80.079547
iter 90 value 79.995223
iter 100 value 79.932840
final value 79.932840
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 113.627582
final value 94.485710
converged
Fitting Repeat 2
# weights: 103
initial value 99.532961
iter 10 value 94.485753
iter 20 value 94.482040
iter 30 value 94.027251
final value 94.027228
converged
Fitting Repeat 3
# weights: 103
initial value 94.960792
final value 94.485831
converged
Fitting Repeat 4
# weights: 103
initial value 97.814053
final value 94.485793
converged
Fitting Repeat 5
# weights: 103
initial value 95.287460
final value 94.485921
converged
Fitting Repeat 1
# weights: 305
initial value 107.749641
iter 10 value 94.032025
iter 20 value 94.026215
iter 30 value 87.311454
iter 40 value 84.126191
iter 50 value 83.708174
final value 83.706007
converged
Fitting Repeat 2
# weights: 305
initial value 102.630875
iter 10 value 94.488827
iter 20 value 89.863205
iter 30 value 86.309697
final value 86.309648
converged
Fitting Repeat 3
# weights: 305
initial value 97.429154
iter 10 value 94.488847
iter 20 value 94.221629
iter 30 value 86.762957
iter 40 value 86.750977
iter 50 value 84.509253
iter 60 value 80.669065
iter 70 value 78.950360
iter 80 value 78.519418
iter 90 value 78.518002
iter 100 value 78.512134
final value 78.512134
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 128.639144
iter 10 value 94.489567
iter 20 value 94.454431
final value 94.026771
converged
Fitting Repeat 5
# weights: 305
initial value 107.159735
iter 10 value 94.487355
iter 20 value 94.256691
iter 30 value 94.027424
final value 94.027334
converged
Fitting Repeat 1
# weights: 507
initial value 122.133526
iter 10 value 94.035296
iter 20 value 94.029234
iter 30 value 94.027179
iter 40 value 87.222907
iter 50 value 86.328731
iter 60 value 86.255519
iter 70 value 85.455993
iter 80 value 84.540387
iter 90 value 84.539062
final value 84.538289
converged
Fitting Repeat 2
# weights: 507
initial value 99.847755
iter 10 value 94.035427
iter 20 value 94.028334
final value 94.027915
converged
Fitting Repeat 3
# weights: 507
initial value 105.982294
iter 10 value 89.728357
iter 20 value 88.122670
iter 30 value 88.106158
iter 40 value 88.105792
iter 50 value 88.099822
iter 60 value 87.186080
iter 70 value 87.163036
iter 80 value 83.953853
iter 90 value 81.528207
iter 100 value 80.653239
final value 80.653239
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.207204
iter 10 value 94.493039
iter 20 value 94.141904
iter 30 value 85.970678
iter 40 value 85.901071
iter 50 value 85.900782
iter 60 value 85.649682
iter 70 value 81.554560
iter 80 value 80.269928
iter 90 value 79.201655
iter 100 value 78.961985
final value 78.961985
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.212002
iter 10 value 94.489880
iter 20 value 94.061580
final value 94.027216
converged
Fitting Repeat 1
# weights: 103
initial value 107.933004
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 112.961543
final value 94.275363
converged
Fitting Repeat 3
# weights: 103
initial value 104.081609
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.774704
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 101.811236
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 103.645872
iter 10 value 94.466823
iter 10 value 94.466823
iter 10 value 94.466823
final value 94.466823
converged
Fitting Repeat 2
# weights: 305
initial value 98.378886
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 98.984401
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 112.481839
iter 10 value 94.420838
final value 94.420833
converged
Fitting Repeat 5
# weights: 305
initial value 99.510363
final value 94.466823
converged
Fitting Repeat 1
# weights: 507
initial value 99.322712
iter 10 value 91.005262
final value 89.080247
converged
Fitting Repeat 2
# weights: 507
initial value 97.677510
iter 10 value 94.297118
iter 20 value 93.065689
iter 30 value 92.215268
iter 40 value 91.982201
iter 50 value 91.981935
final value 91.981910
converged
Fitting Repeat 3
# weights: 507
initial value 106.571482
final value 94.466823
converged
Fitting Repeat 4
# weights: 507
initial value 95.155455
iter 10 value 94.466824
final value 94.466823
converged
Fitting Repeat 5
# weights: 507
initial value 107.529943
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 107.479238
iter 10 value 94.486432
iter 20 value 94.219307
iter 30 value 94.140402
iter 40 value 91.288986
iter 50 value 87.157163
iter 60 value 86.958962
iter 70 value 86.815723
iter 80 value 86.045535
iter 90 value 85.907960
iter 100 value 85.868754
final value 85.868754
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 103.499408
iter 10 value 94.520690
iter 20 value 94.228474
iter 30 value 87.997786
iter 40 value 85.820713
iter 50 value 84.623053
iter 60 value 84.173394
iter 70 value 83.798267
iter 80 value 82.990067
iter 90 value 82.640018
iter 100 value 82.543717
final value 82.543717
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.348716
iter 10 value 94.488712
iter 20 value 90.571497
iter 30 value 85.915180
iter 40 value 84.913980
iter 50 value 84.411696
iter 60 value 84.255234
iter 70 value 84.249938
iter 80 value 84.239730
final value 84.237094
converged
Fitting Repeat 4
# weights: 103
initial value 101.845086
iter 10 value 93.682606
iter 20 value 88.142043
iter 30 value 87.679312
iter 40 value 87.272125
iter 50 value 84.719679
iter 60 value 84.257461
iter 70 value 84.250009
final value 84.249638
converged
Fitting Repeat 5
# weights: 103
initial value 111.774746
iter 10 value 94.593837
iter 20 value 94.471339
iter 30 value 87.396388
iter 40 value 85.612284
iter 50 value 85.518521
iter 60 value 83.848466
iter 70 value 83.373002
iter 80 value 82.967158
iter 90 value 82.786682
final value 82.679705
converged
Fitting Repeat 1
# weights: 305
initial value 119.272726
iter 10 value 94.727013
iter 20 value 93.122729
iter 30 value 92.662472
iter 40 value 92.193313
iter 50 value 87.171944
iter 60 value 86.863072
iter 70 value 85.694035
iter 80 value 83.485140
iter 90 value 82.007118
iter 100 value 81.901654
final value 81.901654
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 114.962654
iter 10 value 94.761956
iter 20 value 86.841485
iter 30 value 85.280624
iter 40 value 83.735242
iter 50 value 83.096484
iter 60 value 82.596809
iter 70 value 82.031160
iter 80 value 81.846656
iter 90 value 81.649125
iter 100 value 81.476701
final value 81.476701
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.092175
iter 10 value 94.487623
iter 20 value 87.954476
iter 30 value 86.778342
iter 40 value 84.728530
iter 50 value 84.300335
iter 60 value 84.082566
iter 70 value 84.033517
iter 80 value 83.375270
iter 90 value 82.620693
iter 100 value 82.215937
final value 82.215937
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 117.270607
iter 10 value 94.294793
iter 20 value 88.316731
iter 30 value 86.828068
iter 40 value 83.567224
iter 50 value 82.733836
iter 60 value 82.289777
iter 70 value 82.051726
iter 80 value 81.660064
iter 90 value 81.620765
iter 100 value 81.562508
final value 81.562508
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.698141
iter 10 value 94.316484
iter 20 value 90.956542
iter 30 value 85.676417
iter 40 value 84.828461
iter 50 value 84.604175
iter 60 value 83.913794
iter 70 value 82.798388
iter 80 value 82.675172
iter 90 value 82.521357
iter 100 value 82.337779
final value 82.337779
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 134.472346
iter 10 value 94.469883
iter 20 value 94.191777
iter 30 value 88.169340
iter 40 value 86.327453
iter 50 value 85.177968
iter 60 value 84.803710
iter 70 value 84.474021
iter 80 value 83.172327
iter 90 value 82.088895
iter 100 value 81.777638
final value 81.777638
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.019345
iter 10 value 94.016391
iter 20 value 87.444027
iter 30 value 87.000777
iter 40 value 86.415336
iter 50 value 85.348444
iter 60 value 84.778497
iter 70 value 84.695083
iter 80 value 83.947582
iter 90 value 83.573273
iter 100 value 82.263626
final value 82.263626
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.791949
iter 10 value 94.829525
iter 20 value 93.355530
iter 30 value 91.585075
iter 40 value 85.148297
iter 50 value 84.546213
iter 60 value 83.327263
iter 70 value 82.274474
iter 80 value 81.866096
iter 90 value 81.576746
iter 100 value 81.341434
final value 81.341434
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.684613
iter 10 value 94.487178
iter 20 value 86.450460
iter 30 value 85.969188
iter 40 value 85.064243
iter 50 value 84.188486
iter 60 value 82.642831
iter 70 value 82.298286
iter 80 value 81.799628
iter 90 value 81.350625
iter 100 value 81.169515
final value 81.169515
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.121622
iter 10 value 93.183085
iter 20 value 86.381225
iter 30 value 84.044146
iter 40 value 84.012397
iter 50 value 83.964870
iter 60 value 83.544695
iter 70 value 82.717937
iter 80 value 82.085678
iter 90 value 81.909769
iter 100 value 81.819552
final value 81.819552
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 104.634119
iter 10 value 94.486158
final value 94.484219
converged
Fitting Repeat 2
# weights: 103
initial value 95.812988
final value 94.485836
converged
Fitting Repeat 3
# weights: 103
initial value 95.143569
final value 94.485844
converged
Fitting Repeat 4
# weights: 103
initial value 96.454738
iter 10 value 94.468452
iter 20 value 94.466850
final value 94.466836
converged
Fitting Repeat 5
# weights: 103
initial value 95.566893
final value 94.485445
converged
Fitting Repeat 1
# weights: 305
initial value 102.428547
iter 10 value 94.164451
iter 20 value 94.160384
iter 30 value 89.176288
iter 40 value 85.889201
iter 50 value 85.374578
iter 60 value 83.657366
iter 70 value 81.326626
iter 80 value 80.870225
iter 90 value 80.720139
iter 100 value 80.640043
final value 80.640043
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.528819
iter 10 value 94.489115
iter 20 value 94.484476
iter 30 value 92.320782
iter 40 value 84.423924
iter 50 value 83.859580
iter 60 value 83.612759
iter 70 value 83.463273
iter 80 value 83.420644
iter 90 value 83.404137
iter 100 value 83.404109
final value 83.404109
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.169405
iter 10 value 94.490128
iter 20 value 93.807063
iter 30 value 93.219237
iter 40 value 87.892474
iter 50 value 85.385072
iter 60 value 83.992392
iter 70 value 83.588320
final value 83.582797
converged
Fitting Repeat 4
# weights: 305
initial value 112.288594
iter 10 value 94.471725
iter 20 value 94.412470
iter 30 value 94.340043
iter 40 value 94.261695
iter 50 value 94.160208
final value 94.160099
converged
Fitting Repeat 5
# weights: 305
initial value 102.675969
iter 10 value 94.489172
iter 20 value 94.452380
iter 30 value 86.053326
iter 40 value 86.027074
iter 50 value 85.624131
iter 60 value 84.984547
iter 70 value 83.588555
iter 80 value 83.318724
iter 90 value 83.311336
final value 83.308211
converged
Fitting Repeat 1
# weights: 507
initial value 103.228577
iter 10 value 94.475195
iter 20 value 94.468481
iter 30 value 87.645483
iter 40 value 84.874393
iter 50 value 83.565840
iter 60 value 82.742502
iter 70 value 82.627489
iter 80 value 82.617596
final value 82.616964
converged
Fitting Repeat 2
# weights: 507
initial value 99.710862
iter 10 value 93.617506
iter 20 value 92.096699
iter 30 value 91.993978
iter 40 value 91.987960
iter 50 value 88.417557
iter 60 value 86.390918
iter 70 value 86.237237
iter 80 value 86.229505
iter 90 value 86.225265
iter 100 value 86.224198
final value 86.224198
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.012782
iter 10 value 94.489749
iter 20 value 93.370527
iter 30 value 84.736617
iter 40 value 84.726543
iter 50 value 84.725525
iter 60 value 84.724707
iter 70 value 84.724054
iter 80 value 84.708115
iter 90 value 84.706226
final value 84.705121
converged
Fitting Repeat 4
# weights: 507
initial value 99.342393
iter 10 value 84.901988
iter 20 value 83.531493
iter 30 value 83.523722
iter 40 value 83.203523
iter 50 value 82.753949
iter 60 value 82.228952
iter 70 value 81.605772
iter 80 value 81.300697
iter 90 value 81.133541
iter 100 value 81.105541
final value 81.105541
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 116.729020
iter 10 value 94.491929
iter 20 value 94.484304
iter 30 value 92.035673
iter 40 value 84.736316
final value 84.721754
converged
Fitting Repeat 1
# weights: 103
initial value 97.522933
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 101.463235
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.074582
iter 10 value 93.801491
iter 20 value 93.612149
final value 93.612099
converged
Fitting Repeat 4
# weights: 103
initial value 95.012626
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 110.849091
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 94.738866
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 106.185721
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 105.288664
iter 10 value 94.052910
iter 10 value 94.052910
iter 10 value 94.052910
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 100.061315
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 111.681052
final value 94.008696
converged
Fitting Repeat 1
# weights: 507
initial value 104.379475
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 132.293994
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 95.631783
iter 10 value 85.073594
final value 85.015367
converged
Fitting Repeat 4
# weights: 507
initial value 94.229900
iter 10 value 91.848204
iter 10 value 91.848204
iter 10 value 91.848204
final value 91.848204
converged
Fitting Repeat 5
# weights: 507
initial value 98.543482
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 98.964992
iter 10 value 93.913725
iter 20 value 85.327328
iter 30 value 80.561082
iter 40 value 80.325239
iter 50 value 79.873342
iter 60 value 79.234287
iter 70 value 78.953308
iter 80 value 78.899904
iter 90 value 78.836840
final value 78.836703
converged
Fitting Repeat 2
# weights: 103
initial value 105.729778
iter 10 value 94.015998
iter 20 value 92.105579
iter 30 value 88.581323
iter 40 value 88.202264
iter 50 value 83.153296
iter 60 value 81.880890
iter 70 value 81.161980
iter 80 value 80.938738
final value 80.930396
converged
Fitting Repeat 3
# weights: 103
initial value 97.672501
iter 10 value 94.082204
iter 20 value 94.005568
iter 30 value 85.996625
iter 40 value 84.301023
iter 50 value 83.477097
iter 60 value 82.521980
iter 70 value 82.392788
iter 80 value 82.098511
iter 90 value 81.723837
iter 100 value 81.715256
final value 81.715256
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 98.276455
iter 10 value 94.057588
iter 20 value 91.090959
iter 30 value 86.309914
iter 40 value 85.413189
iter 50 value 83.762343
iter 60 value 83.532433
iter 70 value 81.701958
iter 80 value 79.695985
iter 90 value 79.403741
iter 100 value 79.296295
final value 79.296295
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 96.974316
iter 10 value 94.043210
iter 20 value 93.847278
iter 30 value 84.076104
iter 40 value 83.271335
iter 50 value 82.807793
iter 60 value 81.181652
iter 70 value 80.463433
iter 80 value 80.373603
iter 90 value 78.826915
iter 100 value 78.440220
final value 78.440220
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 103.618168
iter 10 value 94.751434
iter 20 value 85.439062
iter 30 value 84.547129
iter 40 value 83.608900
iter 50 value 83.442964
iter 60 value 83.379241
iter 70 value 82.577775
iter 80 value 82.100492
iter 90 value 82.082980
iter 100 value 81.971546
final value 81.971546
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.961144
iter 10 value 93.522896
iter 20 value 91.423476
iter 30 value 83.117900
iter 40 value 81.420322
iter 50 value 80.716199
iter 60 value 80.605063
iter 70 value 79.899860
iter 80 value 77.875731
iter 90 value 76.949376
iter 100 value 76.266281
final value 76.266281
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 137.442247
iter 10 value 94.095032
iter 20 value 87.212442
iter 30 value 82.142732
iter 40 value 81.865724
iter 50 value 81.276353
iter 60 value 80.509202
iter 70 value 80.236504
iter 80 value 79.979076
iter 90 value 79.466332
iter 100 value 78.751102
final value 78.751102
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.534595
iter 10 value 93.727885
iter 20 value 92.411540
iter 30 value 92.298746
iter 40 value 88.119743
iter 50 value 81.263187
iter 60 value 78.902165
iter 70 value 78.248811
iter 80 value 78.029596
iter 90 value 77.963886
iter 100 value 77.807564
final value 77.807564
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.648232
iter 10 value 92.015189
iter 20 value 82.986330
iter 30 value 81.951452
iter 40 value 80.156240
iter 50 value 79.713471
iter 60 value 79.556343
iter 70 value 79.326251
iter 80 value 78.329705
iter 90 value 78.175257
iter 100 value 77.144636
final value 77.144636
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.923547
iter 10 value 94.056460
iter 20 value 83.895087
iter 30 value 81.690291
iter 40 value 78.709570
iter 50 value 77.939302
iter 60 value 77.431233
iter 70 value 76.809873
iter 80 value 76.735237
iter 90 value 76.549339
iter 100 value 76.093867
final value 76.093867
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 120.675759
iter 10 value 94.159348
iter 20 value 89.301028
iter 30 value 84.110473
iter 40 value 82.058235
iter 50 value 81.057993
iter 60 value 80.494390
iter 70 value 79.960372
iter 80 value 79.877721
iter 90 value 78.970022
iter 100 value 78.217257
final value 78.217257
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 119.311810
iter 10 value 94.355155
iter 20 value 88.362094
iter 30 value 85.110581
iter 40 value 81.339807
iter 50 value 77.425971
iter 60 value 77.003902
iter 70 value 76.808246
iter 80 value 76.688671
iter 90 value 76.450316
iter 100 value 76.347711
final value 76.347711
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.735939
iter 10 value 96.521866
iter 20 value 84.211178
iter 30 value 83.702187
iter 40 value 83.488082
iter 50 value 82.724915
iter 60 value 81.310756
iter 70 value 78.877371
iter 80 value 78.674104
iter 90 value 78.365522
iter 100 value 78.068521
final value 78.068521
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 111.863496
iter 10 value 94.086556
iter 20 value 87.546117
iter 30 value 84.758294
iter 40 value 83.550490
iter 50 value 82.219583
iter 60 value 81.796762
iter 70 value 81.659928
iter 80 value 81.521258
iter 90 value 79.724265
iter 100 value 78.400824
final value 78.400824
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.348371
final value 94.054356
converged
Fitting Repeat 2
# weights: 103
initial value 104.564950
final value 94.054582
converged
Fitting Repeat 3
# weights: 103
initial value 102.631497
final value 94.054564
converged
Fitting Repeat 4
# weights: 103
initial value 103.134967
iter 10 value 94.054473
iter 20 value 93.983882
iter 30 value 90.877035
iter 40 value 90.867944
iter 50 value 90.677977
iter 60 value 90.675330
iter 70 value 90.674082
iter 80 value 90.674013
final value 90.673945
converged
Fitting Repeat 5
# weights: 103
initial value 95.236105
final value 94.054508
converged
Fitting Repeat 1
# weights: 305
initial value 132.700626
iter 10 value 94.058678
iter 20 value 94.051184
iter 30 value 88.108678
iter 40 value 87.722140
iter 50 value 87.720292
iter 60 value 87.720190
iter 70 value 87.720055
iter 80 value 87.719960
iter 80 value 87.719960
final value 87.719960
converged
Fitting Repeat 2
# weights: 305
initial value 94.908193
iter 10 value 94.013514
iter 20 value 94.006225
iter 30 value 94.005019
final value 94.005015
converged
Fitting Repeat 3
# weights: 305
initial value 97.800936
iter 10 value 94.057022
iter 20 value 93.628755
iter 30 value 81.164862
iter 40 value 81.158852
iter 50 value 80.928730
iter 60 value 79.396498
iter 70 value 77.018667
iter 80 value 75.322515
iter 90 value 74.874614
iter 100 value 74.725238
final value 74.725238
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 112.200005
iter 10 value 94.058280
iter 20 value 94.006140
iter 30 value 83.207881
iter 40 value 83.204965
iter 50 value 81.088017
iter 60 value 81.084512
iter 70 value 80.911470
iter 80 value 80.506128
iter 90 value 80.415568
iter 100 value 80.414624
final value 80.414624
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.741209
iter 10 value 94.058375
iter 20 value 93.479862
iter 30 value 92.100810
final value 92.100070
converged
Fitting Repeat 1
# weights: 507
initial value 100.158414
iter 10 value 94.059805
iter 20 value 93.794964
iter 30 value 86.539342
iter 40 value 86.528405
iter 50 value 86.404832
iter 60 value 85.528287
iter 70 value 84.934725
iter 80 value 83.493824
iter 90 value 83.327467
iter 100 value 83.287354
final value 83.287354
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 95.159936
iter 10 value 94.017256
iter 20 value 94.005490
iter 30 value 94.004926
iter 40 value 83.389860
iter 50 value 80.369537
iter 60 value 80.346491
iter 70 value 80.241938
iter 80 value 80.235055
iter 90 value 79.457504
iter 100 value 75.211107
final value 75.211107
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.167479
iter 10 value 94.017132
iter 20 value 88.168477
iter 30 value 81.156774
iter 40 value 81.020382
iter 50 value 81.019949
final value 81.019755
converged
Fitting Repeat 4
# weights: 507
initial value 100.252263
iter 10 value 94.061386
iter 20 value 93.946032
iter 30 value 85.379869
iter 40 value 85.323507
iter 50 value 85.099831
iter 50 value 85.099830
iter 50 value 85.099830
final value 85.099830
converged
Fitting Repeat 5
# weights: 507
initial value 96.927113
iter 10 value 93.266605
iter 20 value 93.264257
iter 30 value 93.154158
iter 40 value 91.969428
iter 50 value 89.619084
iter 60 value 89.611672
iter 70 value 89.610700
final value 89.610689
converged
Fitting Repeat 1
# weights: 103
initial value 99.590285
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 95.263059
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 98.296028
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 115.995690
final value 94.044445
converged
Fitting Repeat 5
# weights: 103
initial value 103.038230
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 97.043329
final value 93.893853
converged
Fitting Repeat 2
# weights: 305
initial value 99.751899
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 96.954438
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 98.643810
final value 94.032967
converged
Fitting Repeat 5
# weights: 305
initial value 94.856658
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 104.506572
iter 10 value 94.023443
final value 94.023305
converged
Fitting Repeat 2
# weights: 507
initial value 106.306952
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 110.179853
iter 10 value 93.576975
iter 20 value 93.510263
final value 93.510217
converged
Fitting Repeat 4
# weights: 507
initial value 95.366195
iter 10 value 91.726512
iter 20 value 91.433438
iter 30 value 91.432754
final value 91.432749
converged
Fitting Repeat 5
# weights: 507
initial value 100.059119
final value 94.032967
converged
Fitting Repeat 1
# weights: 103
initial value 108.502911
iter 10 value 94.058550
iter 20 value 93.796508
iter 30 value 90.849797
iter 40 value 89.121335
iter 50 value 86.747964
iter 60 value 84.027334
iter 70 value 82.973850
iter 80 value 82.821226
iter 90 value 82.760053
iter 100 value 82.676894
final value 82.676894
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.886024
iter 10 value 94.056115
iter 20 value 93.841595
iter 30 value 88.544131
iter 40 value 86.882384
iter 50 value 86.520696
iter 60 value 85.687003
iter 70 value 84.791504
iter 80 value 83.070168
iter 90 value 82.891901
iter 100 value 82.373107
final value 82.373107
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.679910
iter 10 value 94.077638
iter 20 value 93.368031
iter 30 value 88.489239
iter 40 value 85.767319
iter 50 value 85.664966
iter 60 value 85.593042
iter 70 value 85.483616
iter 80 value 83.711340
iter 90 value 83.236868
iter 100 value 83.070256
final value 83.070256
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.385935
iter 10 value 94.056700
iter 20 value 85.578898
iter 30 value 84.998406
iter 40 value 84.910098
iter 50 value 84.745235
iter 60 value 84.657700
iter 70 value 84.648377
iter 70 value 84.648377
iter 70 value 84.648377
final value 84.648377
converged
Fitting Repeat 5
# weights: 103
initial value 101.800632
iter 10 value 94.045025
iter 20 value 89.159252
iter 30 value 87.826959
iter 40 value 86.266603
iter 50 value 85.700682
iter 60 value 85.221892
iter 70 value 85.117955
iter 80 value 85.076766
final value 85.076528
converged
Fitting Repeat 1
# weights: 305
initial value 114.591716
iter 10 value 94.266761
iter 20 value 93.825376
iter 30 value 90.021938
iter 40 value 87.559313
iter 50 value 86.768801
iter 60 value 86.610150
iter 70 value 86.575156
iter 80 value 84.056898
iter 90 value 83.582010
iter 100 value 83.242615
final value 83.242615
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.342003
iter 10 value 94.021884
iter 20 value 90.554058
iter 30 value 86.695405
iter 40 value 86.563882
iter 50 value 86.257999
iter 60 value 84.265705
iter 70 value 82.890482
iter 80 value 82.220797
iter 90 value 82.053978
iter 100 value 81.916274
final value 81.916274
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.339606
iter 10 value 94.101083
iter 20 value 88.462019
iter 30 value 84.877183
iter 40 value 84.688169
iter 50 value 84.633722
iter 60 value 84.628012
iter 70 value 84.571444
iter 80 value 83.799292
iter 90 value 83.252703
iter 100 value 83.155554
final value 83.155554
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.680977
iter 10 value 94.125578
iter 20 value 93.822816
iter 30 value 91.375944
iter 40 value 85.050116
iter 50 value 83.472781
iter 60 value 83.088221
iter 70 value 82.261849
iter 80 value 81.994841
iter 90 value 81.441638
iter 100 value 81.331003
final value 81.331003
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 110.400890
iter 10 value 94.085793
iter 20 value 87.396585
iter 30 value 86.540060
iter 40 value 85.931419
iter 50 value 84.401256
iter 60 value 83.639348
iter 70 value 82.637421
iter 80 value 81.743513
iter 90 value 81.423509
iter 100 value 81.357517
final value 81.357517
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.525765
iter 10 value 93.619487
iter 20 value 88.885108
iter 30 value 86.657085
iter 40 value 86.232829
iter 50 value 85.042251
iter 60 value 83.450452
iter 70 value 82.048605
iter 80 value 81.535048
iter 90 value 81.223037
iter 100 value 80.655386
final value 80.655386
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 120.936385
iter 10 value 94.378991
iter 20 value 94.078617
iter 30 value 93.798847
iter 40 value 93.677765
iter 50 value 87.377624
iter 60 value 82.727625
iter 70 value 82.140808
iter 80 value 81.515421
iter 90 value 81.455671
iter 100 value 81.326583
final value 81.326583
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.187099
iter 10 value 94.364321
iter 20 value 93.359243
iter 30 value 87.094014
iter 40 value 82.981636
iter 50 value 81.325396
iter 60 value 80.812566
iter 70 value 80.659248
iter 80 value 80.585949
iter 90 value 80.506830
iter 100 value 80.454872
final value 80.454872
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 101.972197
iter 10 value 94.095517
iter 20 value 93.470811
iter 30 value 86.858156
iter 40 value 85.839132
iter 50 value 82.011602
iter 60 value 81.266203
iter 70 value 80.958905
iter 80 value 80.813810
iter 90 value 80.808279
iter 100 value 80.794552
final value 80.794552
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 116.276455
iter 10 value 94.033237
iter 20 value 86.757002
iter 30 value 83.610007
iter 40 value 81.829885
iter 50 value 81.279761
iter 60 value 80.942090
iter 70 value 80.799621
iter 80 value 80.741166
iter 90 value 80.652570
iter 100 value 80.624524
final value 80.624524
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.448045
final value 94.054575
converged
Fitting Repeat 2
# weights: 103
initial value 97.458171
final value 94.054471
converged
Fitting Repeat 3
# weights: 103
initial value 94.130957
final value 94.054799
converged
Fitting Repeat 4
# weights: 103
initial value 100.683654
final value 93.630181
converged
Fitting Repeat 5
# weights: 103
initial value 97.991792
final value 94.054671
converged
Fitting Repeat 1
# weights: 305
initial value 105.785577
iter 10 value 94.057729
iter 20 value 94.053160
iter 30 value 86.645371
final value 86.620553
converged
Fitting Repeat 2
# weights: 305
initial value 97.960468
iter 10 value 86.496066
iter 20 value 86.494076
iter 30 value 86.486138
iter 40 value 85.811320
iter 50 value 85.448120
iter 60 value 85.445061
iter 70 value 85.425662
iter 80 value 85.415218
iter 90 value 85.415101
iter 100 value 85.415060
final value 85.415060
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.976101
iter 10 value 94.057108
iter 20 value 93.986593
iter 30 value 86.292808
iter 40 value 84.918044
iter 50 value 84.892314
iter 60 value 84.669816
iter 70 value 84.503725
iter 80 value 84.498128
iter 90 value 83.907012
iter 100 value 83.671031
final value 83.671031
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 98.076429
iter 10 value 94.037890
iter 20 value 86.677214
iter 30 value 84.174597
iter 40 value 83.850678
iter 50 value 83.790988
iter 60 value 83.264042
iter 70 value 82.190856
final value 82.080674
converged
Fitting Repeat 5
# weights: 305
initial value 108.983177
iter 10 value 94.057868
iter 20 value 94.053060
iter 30 value 88.623856
final value 87.376211
converged
Fitting Repeat 1
# weights: 507
initial value 113.383513
iter 10 value 94.061726
iter 20 value 93.790435
iter 30 value 92.332791
iter 40 value 92.046819
iter 50 value 84.969426
iter 60 value 84.784483
iter 70 value 84.782817
iter 80 value 84.767390
iter 90 value 84.700677
final value 84.700229
converged
Fitting Repeat 2
# weights: 507
initial value 100.714389
iter 10 value 93.468146
iter 20 value 93.462130
iter 30 value 93.455757
iter 40 value 93.098408
iter 50 value 92.855681
iter 60 value 92.855596
iter 70 value 88.468071
iter 80 value 83.086304
iter 90 value 82.626943
iter 100 value 82.387532
final value 82.387532
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 131.188334
iter 10 value 94.062374
iter 20 value 94.053173
iter 30 value 94.005507
iter 40 value 87.377414
iter 50 value 87.376954
iter 60 value 87.350108
iter 70 value 87.220656
iter 80 value 87.218137
final value 87.217956
converged
Fitting Repeat 4
# weights: 507
initial value 97.953690
iter 10 value 94.060296
iter 20 value 93.847429
iter 30 value 93.840308
iter 40 value 86.184036
iter 50 value 85.117711
iter 60 value 85.097222
iter 70 value 85.096342
final value 85.096315
converged
Fitting Repeat 5
# weights: 507
initial value 106.631906
iter 10 value 94.041182
iter 20 value 89.141705
iter 30 value 86.348408
iter 40 value 84.838613
iter 50 value 84.835088
iter 60 value 84.820384
iter 70 value 84.801443
iter 80 value 84.799230
iter 90 value 82.453921
iter 100 value 81.352414
final value 81.352414
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 120.474312
iter 10 value 117.763522
iter 20 value 117.746750
iter 30 value 108.568597
iter 40 value 108.524704
iter 50 value 104.872331
iter 60 value 102.811244
final value 102.747210
converged
Fitting Repeat 2
# weights: 305
initial value 117.986708
iter 10 value 117.893072
iter 20 value 108.120470
final value 106.779624
converged
Fitting Repeat 3
# weights: 305
initial value 121.957917
iter 10 value 117.440348
iter 20 value 107.328934
iter 30 value 106.646599
iter 40 value 106.644571
iter 40 value 106.644571
final value 106.644571
converged
Fitting Repeat 4
# weights: 305
initial value 127.708967
iter 10 value 117.763531
iter 20 value 117.759270
iter 30 value 117.547144
iter 40 value 108.456126
iter 50 value 105.911648
iter 60 value 101.896204
iter 70 value 101.579487
iter 80 value 101.565066
final value 101.565021
converged
Fitting Repeat 5
# weights: 305
initial value 140.063945
iter 10 value 117.895574
iter 20 value 117.513367
iter 30 value 113.887401
iter 40 value 109.125538
iter 50 value 106.141062
iter 60 value 105.474106
iter 70 value 105.372666
iter 70 value 105.372665
iter 70 value 105.372665
final value 105.372665
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Dec 23 00:15:20 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
41.823 1.929 92.152
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 32.637 | 0.602 | 33.322 | |
| FreqInteractors | 0.458 | 0.024 | 0.482 | |
| calculateAAC | 0.031 | 0.001 | 0.033 | |
| calculateAutocor | 0.299 | 0.019 | 0.320 | |
| calculateCTDC | 0.073 | 0.001 | 0.075 | |
| calculateCTDD | 0.468 | 0.002 | 0.471 | |
| calculateCTDT | 0.143 | 0.002 | 0.145 | |
| calculateCTriad | 0.372 | 0.008 | 0.380 | |
| calculateDC | 0.081 | 0.008 | 0.090 | |
| calculateF | 0.317 | 0.000 | 0.317 | |
| calculateKSAAP | 0.106 | 0.005 | 0.112 | |
| calculateQD_Sm | 1.733 | 0.028 | 1.760 | |
| calculateTC | 1.470 | 0.136 | 1.606 | |
| calculateTC_Sm | 0.269 | 0.003 | 0.274 | |
| corr_plot | 34.152 | 0.345 | 34.583 | |
| enrichfindP | 0.610 | 0.036 | 12.790 | |
| enrichfind_hp | 0.039 | 0.004 | 2.008 | |
| enrichplot | 0.486 | 0.004 | 0.500 | |
| filter_missing_values | 0.000 | 0.001 | 0.001 | |
| getFASTA | 0.355 | 0.007 | 6.660 | |
| getHPI | 0.001 | 0.000 | 0.001 | |
| get_negativePPI | 0.001 | 0.000 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.001 | 0.000 | 0.001 | |
| plotPPI | 0.077 | 0.001 | 0.079 | |
| pred_ensembel | 12.623 | 0.100 | 11.374 | |
| var_imp | 33.433 | 0.404 | 33.837 | |