Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-03-20 12:12 -0400 (Thu, 20 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4756 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4487 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4514 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4441 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4406 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-03-18 08:33:01 -0000 (Tue, 18 Mar 2025) |
EndedAt: 2025-03-18 08:39:37 -0000 (Tue, 18 Mar 2025) |
EllapsedTime: 396.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.3 (2025-02-28) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: openEuler 24.03 (LTS) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 34.008 0.347 34.434 FSmethod 34.130 0.200 34.406 corr_plot 33.924 0.324 34.319 pred_ensembel 17.566 0.187 16.540 enrichfindP 0.499 0.016 20.514 getFASTA 0.121 0.008 5.603 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.4.3/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 96.708437 final value 94.112570 converged Fitting Repeat 2 # weights: 103 initial value 97.567333 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.957667 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.736402 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.065594 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.730176 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 102.536638 iter 10 value 93.394966 final value 93.394928 converged Fitting Repeat 3 # weights: 305 initial value 102.940615 iter 10 value 93.395047 final value 93.394928 converged Fitting Repeat 4 # weights: 305 initial value 99.774869 iter 10 value 93.394945 final value 93.394928 converged Fitting Repeat 5 # weights: 305 initial value 99.592255 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.312631 iter 10 value 93.042975 final value 93.041991 converged Fitting Repeat 2 # weights: 507 initial value 97.764276 iter 10 value 91.617612 iter 20 value 82.667072 iter 30 value 82.247843 iter 40 value 82.160616 iter 50 value 82.156803 final value 82.156782 converged Fitting Repeat 3 # weights: 507 initial value 100.868742 iter 10 value 93.394943 final value 93.394928 converged Fitting Repeat 4 # weights: 507 initial value 96.863152 iter 10 value 93.416453 final value 93.394928 converged Fitting Repeat 5 # weights: 507 initial value 107.961445 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 102.818141 iter 10 value 94.262488 iter 20 value 92.653705 iter 30 value 92.592329 iter 40 value 85.561327 iter 50 value 84.704354 iter 60 value 84.671510 iter 70 value 84.634529 iter 80 value 84.026663 iter 90 value 83.704805 iter 100 value 83.676713 final value 83.676713 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.645693 iter 10 value 94.488513 iter 20 value 94.386245 iter 30 value 93.787659 iter 40 value 93.725531 iter 50 value 93.704605 iter 60 value 93.683928 iter 70 value 93.680008 iter 80 value 93.483620 iter 90 value 93.086537 iter 100 value 91.820525 final value 91.820525 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.606124 iter 10 value 94.356109 iter 20 value 93.448091 iter 30 value 92.878966 iter 40 value 86.114446 iter 50 value 82.370947 iter 60 value 81.451135 iter 70 value 81.385212 iter 80 value 81.379061 iter 90 value 81.374882 iter 90 value 81.374881 iter 90 value 81.374881 final value 81.374881 converged Fitting Repeat 4 # weights: 103 initial value 107.477353 iter 10 value 94.183114 iter 20 value 85.932703 iter 30 value 84.964383 iter 40 value 84.141154 iter 50 value 83.888818 iter 60 value 83.752778 iter 70 value 83.677960 final value 83.674309 converged Fitting Repeat 5 # weights: 103 initial value 107.866754 iter 10 value 94.305140 iter 20 value 93.678005 iter 30 value 93.676225 iter 40 value 93.528139 iter 50 value 85.846972 iter 60 value 84.878998 iter 70 value 84.588415 iter 80 value 84.039867 iter 90 value 83.863726 iter 100 value 81.867090 final value 81.867090 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 119.315249 iter 10 value 94.892675 iter 20 value 90.971757 iter 30 value 83.711685 iter 40 value 82.207608 iter 50 value 81.147378 iter 60 value 80.349826 iter 70 value 79.839794 iter 80 value 79.600534 iter 90 value 79.523851 iter 100 value 79.508924 final value 79.508924 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.771975 iter 10 value 94.474891 iter 20 value 93.559206 iter 30 value 91.408257 iter 40 value 85.448410 iter 50 value 84.224443 iter 60 value 82.896112 iter 70 value 81.063378 iter 80 value 79.923016 iter 90 value 79.802731 iter 100 value 79.373622 final value 79.373622 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.505951 iter 10 value 95.804627 iter 20 value 90.400884 iter 30 value 84.864167 iter 40 value 84.225078 iter 50 value 84.072439 iter 60 value 83.516083 iter 70 value 83.230126 iter 80 value 82.803865 iter 90 value 81.011854 iter 100 value 80.348259 final value 80.348259 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.000760 iter 10 value 93.972263 iter 20 value 85.344088 iter 30 value 84.444855 iter 40 value 83.662316 iter 50 value 83.533011 iter 60 value 82.024011 iter 70 value 81.058113 iter 80 value 81.016733 iter 90 value 81.015527 iter 100 value 80.997609 final value 80.997609 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 121.784068 iter 10 value 94.736338 iter 20 value 94.171887 iter 30 value 88.525906 iter 40 value 84.419066 iter 50 value 83.261656 iter 60 value 82.698202 iter 70 value 82.270784 iter 80 value 81.588644 iter 90 value 80.757254 iter 100 value 80.583129 final value 80.583129 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.426614 iter 10 value 94.367862 iter 20 value 89.970668 iter 30 value 85.301811 iter 40 value 84.268485 iter 50 value 82.676967 iter 60 value 81.375067 iter 70 value 81.178455 iter 80 value 81.022649 iter 90 value 80.607168 iter 100 value 80.203371 final value 80.203371 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 137.671429 iter 10 value 94.281011 iter 20 value 93.524836 iter 30 value 92.494805 iter 40 value 84.338783 iter 50 value 82.925878 iter 60 value 81.712639 iter 70 value 80.758409 iter 80 value 80.008190 iter 90 value 79.702904 iter 100 value 79.597464 final value 79.597464 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.960619 iter 10 value 95.856218 iter 20 value 87.294147 iter 30 value 84.517392 iter 40 value 82.729243 iter 50 value 82.085382 iter 60 value 80.263378 iter 70 value 79.959015 iter 80 value 79.668414 iter 90 value 79.514733 iter 100 value 79.332999 final value 79.332999 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.087001 iter 10 value 94.593031 iter 20 value 93.711687 iter 30 value 92.206185 iter 40 value 85.540715 iter 50 value 84.429909 iter 60 value 83.479355 iter 70 value 81.502632 iter 80 value 79.919103 iter 90 value 79.567993 iter 100 value 79.405835 final value 79.405835 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 120.016482 iter 10 value 93.126715 iter 20 value 90.599911 iter 30 value 86.444247 iter 40 value 81.798686 iter 50 value 80.499130 iter 60 value 80.161528 iter 70 value 80.099714 iter 80 value 79.993112 iter 90 value 79.677401 iter 100 value 79.604287 final value 79.604287 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 111.384088 final value 94.485862 converged Fitting Repeat 2 # weights: 103 initial value 99.990540 final value 94.485721 converged Fitting Repeat 3 # weights: 103 initial value 97.757594 final value 94.485959 converged Fitting Repeat 4 # weights: 103 initial value 92.428675 iter 10 value 86.451113 iter 20 value 85.790709 iter 30 value 85.790507 iter 40 value 85.789614 iter 50 value 85.789208 final value 85.788951 converged Fitting Repeat 5 # weights: 103 initial value 101.520375 final value 94.485979 converged Fitting Repeat 1 # weights: 305 initial value 96.076107 iter 10 value 94.489416 iter 20 value 94.117582 iter 30 value 93.323596 iter 40 value 93.296227 iter 50 value 93.156958 iter 60 value 93.151310 iter 70 value 93.131434 iter 80 value 92.236152 iter 90 value 92.205527 iter 100 value 92.204327 final value 92.204327 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.118350 iter 10 value 94.489444 iter 20 value 94.483140 iter 30 value 93.940765 iter 40 value 92.162340 iter 50 value 90.548658 iter 60 value 90.524293 iter 70 value 90.524136 iter 80 value 90.523134 iter 90 value 90.522733 iter 100 value 90.327209 final value 90.327209 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 94.673872 iter 10 value 94.489086 iter 20 value 93.757610 final value 93.395854 converged Fitting Repeat 4 # weights: 305 initial value 101.166295 iter 10 value 94.489009 iter 20 value 94.484264 iter 20 value 94.484263 final value 94.484263 converged Fitting Repeat 5 # weights: 305 initial value 96.039126 iter 10 value 94.489140 iter 20 value 94.484233 final value 94.484222 converged Fitting Repeat 1 # weights: 507 initial value 106.463901 iter 10 value 93.163704 iter 20 value 93.162298 iter 30 value 93.155393 iter 40 value 86.415325 iter 50 value 86.264614 iter 60 value 85.316769 iter 70 value 84.971843 iter 80 value 84.970204 final value 84.968273 converged Fitting Repeat 2 # weights: 507 initial value 103.735693 iter 10 value 94.490540 iter 20 value 93.405591 final value 93.397244 converged Fitting Repeat 3 # weights: 507 initial value 101.736724 iter 10 value 94.492806 iter 20 value 94.387930 final value 93.395518 converged Fitting Repeat 4 # weights: 507 initial value 104.088664 iter 10 value 93.932828 iter 20 value 90.502587 iter 30 value 90.498852 iter 40 value 90.497811 iter 50 value 90.357769 iter 60 value 90.355706 iter 70 value 87.191143 iter 80 value 82.917013 iter 90 value 82.161373 iter 100 value 82.161265 final value 82.161265 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.893791 iter 10 value 93.403564 iter 20 value 93.398735 iter 30 value 93.151202 iter 40 value 93.020490 iter 50 value 83.797734 iter 60 value 79.899528 iter 70 value 78.227382 iter 80 value 77.765990 iter 90 value 77.648234 iter 100 value 77.645194 final value 77.645194 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.357185 iter 10 value 93.859254 iter 20 value 93.838820 final value 93.838814 converged Fitting Repeat 2 # weights: 103 initial value 104.579224 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.969201 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.811173 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.132290 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.649876 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.770811 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 101.414979 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 107.139407 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 107.136814 iter 10 value 94.432883 iter 20 value 94.430235 final value 94.430233 converged Fitting Repeat 1 # weights: 507 initial value 95.174165 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 98.996846 iter 10 value 94.427936 final value 94.427933 converged Fitting Repeat 3 # weights: 507 initial value 112.866650 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 130.389822 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 95.123983 final value 94.449439 converged Fitting Repeat 1 # weights: 103 initial value 101.694305 iter 10 value 94.527694 iter 20 value 94.466407 iter 30 value 90.701172 iter 40 value 89.635509 iter 50 value 88.366441 iter 60 value 87.537498 iter 70 value 85.852246 iter 80 value 85.574404 iter 90 value 85.289357 iter 100 value 84.553582 final value 84.553582 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.077245 iter 10 value 94.406923 iter 20 value 86.560615 iter 30 value 86.214343 iter 40 value 85.625147 iter 50 value 85.054558 iter 60 value 84.511165 iter 70 value 84.389987 final value 84.356280 converged Fitting Repeat 3 # weights: 103 initial value 101.293791 iter 10 value 94.486688 iter 20 value 89.628553 iter 30 value 87.401544 iter 40 value 87.094648 iter 50 value 86.104500 iter 60 value 85.459132 iter 70 value 85.034587 iter 80 value 84.952569 iter 90 value 84.510469 iter 100 value 84.356313 final value 84.356313 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.711861 iter 10 value 94.487745 iter 20 value 89.504918 iter 30 value 88.007291 iter 40 value 86.857545 iter 50 value 86.324553 iter 60 value 85.848362 iter 70 value 85.671953 iter 80 value 85.557051 final value 85.549717 converged Fitting Repeat 5 # weights: 103 initial value 96.726037 iter 10 value 89.511289 iter 20 value 88.800243 iter 30 value 87.865327 iter 40 value 85.796942 iter 50 value 85.155589 iter 60 value 85.094030 iter 70 value 85.025740 iter 80 value 84.861155 iter 90 value 84.612147 iter 100 value 84.436150 final value 84.436150 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 106.064880 iter 10 value 94.554417 iter 20 value 94.488437 iter 30 value 90.504609 iter 40 value 87.384332 iter 50 value 84.537035 iter 60 value 82.983726 iter 70 value 82.573001 iter 80 value 82.174770 iter 90 value 81.995678 iter 100 value 81.915222 final value 81.915222 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.991344 iter 10 value 93.410434 iter 20 value 92.531092 iter 30 value 89.778878 iter 40 value 87.928893 iter 50 value 84.884407 iter 60 value 82.801611 iter 70 value 82.318173 iter 80 value 82.074697 iter 90 value 81.767658 iter 100 value 81.635930 final value 81.635930 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.891483 iter 10 value 94.452266 iter 20 value 90.871782 iter 30 value 88.901985 iter 40 value 86.117650 iter 50 value 83.051807 iter 60 value 82.659758 iter 70 value 82.443035 iter 80 value 82.338449 iter 90 value 82.104232 iter 100 value 81.914918 final value 81.914918 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.394990 iter 10 value 94.564538 iter 20 value 94.478565 iter 30 value 88.241140 iter 40 value 87.142445 iter 50 value 86.690941 iter 60 value 86.102033 iter 70 value 84.928938 iter 80 value 82.923147 iter 90 value 82.231300 iter 100 value 81.671661 final value 81.671661 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.367306 iter 10 value 94.549565 iter 20 value 94.268338 iter 30 value 93.364722 iter 40 value 92.988343 iter 50 value 87.550298 iter 60 value 85.807173 iter 70 value 84.992910 iter 80 value 84.021032 iter 90 value 83.339540 iter 100 value 82.856768 final value 82.856768 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.789840 iter 10 value 94.887197 iter 20 value 89.089662 iter 30 value 84.399717 iter 40 value 83.224431 iter 50 value 82.357138 iter 60 value 82.008014 iter 70 value 81.970809 iter 80 value 81.837301 iter 90 value 81.818280 iter 100 value 81.734681 final value 81.734681 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.961638 iter 10 value 91.348876 iter 20 value 88.155290 iter 30 value 86.913033 iter 40 value 86.198609 iter 50 value 85.991265 iter 60 value 85.914038 iter 70 value 85.566598 iter 80 value 84.459559 iter 90 value 83.328577 iter 100 value 83.105706 final value 83.105706 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.410763 iter 10 value 94.058482 iter 20 value 93.762204 iter 30 value 93.643474 iter 40 value 91.394520 iter 50 value 84.999348 iter 60 value 84.356480 iter 70 value 83.914439 iter 80 value 83.481010 iter 90 value 82.503293 iter 100 value 82.332079 final value 82.332079 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.484432 iter 10 value 97.612934 iter 20 value 93.804243 iter 30 value 90.698228 iter 40 value 88.566571 iter 50 value 87.010638 iter 60 value 84.716667 iter 70 value 82.941880 iter 80 value 81.747107 iter 90 value 81.416859 iter 100 value 81.353450 final value 81.353450 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.818560 iter 10 value 99.466730 iter 20 value 90.849188 iter 30 value 87.378234 iter 40 value 83.837871 iter 50 value 82.801646 iter 60 value 82.456657 iter 70 value 81.884294 iter 80 value 81.333340 iter 90 value 81.255073 iter 100 value 81.028988 final value 81.028988 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.334265 iter 10 value 94.515990 iter 20 value 94.513155 iter 30 value 94.485199 iter 40 value 94.484224 final value 94.484214 converged Fitting Repeat 2 # weights: 103 initial value 96.925833 iter 10 value 94.432296 final value 94.431985 converged Fitting Repeat 3 # weights: 103 initial value 104.287231 iter 10 value 94.485788 iter 20 value 94.484231 iter 30 value 94.132277 iter 40 value 93.895745 iter 50 value 93.862025 iter 60 value 93.767453 iter 70 value 93.766781 iter 70 value 93.766781 final value 93.766781 converged Fitting Repeat 4 # weights: 103 initial value 109.430372 final value 94.324439 converged Fitting Repeat 5 # weights: 103 initial value 122.616788 final value 94.485946 converged Fitting Repeat 1 # weights: 305 initial value 107.122831 iter 10 value 94.489626 iter 20 value 94.487827 iter 30 value 93.961519 iter 40 value 88.424895 final value 86.691789 converged Fitting Repeat 2 # weights: 305 initial value 102.241123 iter 10 value 94.488928 iter 20 value 94.253131 iter 30 value 93.846972 iter 40 value 93.794231 final value 93.794191 converged Fitting Repeat 3 # weights: 305 initial value 103.396970 iter 10 value 94.488796 iter 20 value 93.264257 iter 30 value 86.459142 iter 40 value 86.390616 iter 50 value 86.387003 iter 60 value 86.380190 iter 70 value 86.029033 iter 80 value 82.586889 iter 90 value 80.408227 iter 100 value 79.944739 final value 79.944739 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 95.877205 iter 10 value 94.488608 iter 20 value 94.466744 iter 30 value 93.164802 iter 40 value 93.117575 iter 50 value 93.117304 iter 60 value 93.117071 final value 93.116960 converged Fitting Repeat 5 # weights: 305 initial value 99.980292 iter 10 value 93.683620 iter 20 value 92.941509 iter 30 value 92.939570 iter 40 value 92.928295 iter 50 value 92.921557 iter 60 value 92.788824 iter 70 value 92.732186 final value 92.731887 converged Fitting Repeat 1 # weights: 507 initial value 116.040308 iter 10 value 94.491934 iter 20 value 94.483325 iter 30 value 89.438147 iter 40 value 85.819575 iter 50 value 85.555728 iter 60 value 85.513902 iter 70 value 85.505765 iter 80 value 85.307749 iter 90 value 85.276243 iter 100 value 85.266211 final value 85.266211 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.899520 iter 10 value 94.491967 iter 20 value 94.248667 iter 30 value 93.227406 iter 40 value 93.119915 iter 50 value 87.664674 iter 60 value 84.701305 iter 70 value 82.769009 iter 80 value 82.646267 iter 90 value 82.640502 iter 100 value 82.640307 final value 82.640307 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.961961 iter 10 value 94.331379 iter 20 value 94.072576 iter 30 value 87.633612 iter 40 value 87.209474 iter 50 value 87.206860 iter 60 value 86.116558 iter 70 value 84.647760 iter 80 value 83.629244 iter 90 value 83.574417 iter 100 value 83.574142 final value 83.574142 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.780986 iter 10 value 94.492316 iter 20 value 94.397628 iter 30 value 90.817709 iter 40 value 85.192304 iter 50 value 84.713060 iter 60 value 82.615137 iter 70 value 81.969876 iter 80 value 81.968796 iter 90 value 81.456587 iter 100 value 81.156231 final value 81.156231 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 93.879875 iter 10 value 87.931708 iter 20 value 85.078761 iter 30 value 83.133539 iter 40 value 82.666480 iter 50 value 82.622138 iter 60 value 82.616536 iter 70 value 82.615081 iter 80 value 82.567169 iter 90 value 82.420673 iter 100 value 82.410243 final value 82.410243 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.796769 final value 94.008696 converged Fitting Repeat 2 # weights: 103 initial value 102.953743 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.862308 final value 94.011429 converged Fitting Repeat 4 # weights: 103 initial value 101.307038 iter 10 value 89.795706 iter 20 value 87.804043 iter 30 value 87.803850 final value 87.803838 converged Fitting Repeat 5 # weights: 103 initial value 105.396067 final value 94.008696 converged Fitting Repeat 1 # weights: 305 initial value 97.028205 iter 10 value 93.971006 iter 20 value 93.963182 final value 93.963025 converged Fitting Repeat 2 # weights: 305 initial value 100.433616 final value 94.008696 converged Fitting Repeat 3 # weights: 305 initial value 106.193874 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 106.332479 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 98.550362 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 95.341053 iter 10 value 93.861590 final value 93.861587 converged Fitting Repeat 2 # weights: 507 initial value 112.061461 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 98.486161 iter 10 value 93.717253 final value 93.664372 converged Fitting Repeat 4 # weights: 507 initial value 97.202535 iter 10 value 94.008696 iter 10 value 94.008696 iter 10 value 94.008696 final value 94.008696 converged Fitting Repeat 5 # weights: 507 initial value 119.566222 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 97.937863 iter 10 value 94.059110 iter 20 value 93.808827 iter 30 value 88.954693 iter 40 value 85.150024 iter 50 value 84.569960 iter 60 value 84.110617 iter 70 value 83.993071 iter 80 value 83.943874 iter 90 value 83.928172 final value 83.928151 converged Fitting Repeat 2 # weights: 103 initial value 106.346486 iter 10 value 94.057508 iter 20 value 91.501727 iter 30 value 85.700575 iter 40 value 84.733725 iter 50 value 84.461028 iter 60 value 84.043410 iter 70 value 83.941151 iter 80 value 83.497458 iter 90 value 83.487096 final value 83.486162 converged Fitting Repeat 3 # weights: 103 initial value 97.591688 iter 10 value 93.969313 iter 20 value 92.617109 iter 30 value 89.888769 iter 40 value 87.122449 iter 50 value 84.843661 iter 60 value 84.281887 iter 70 value 83.142708 iter 80 value 82.582219 iter 90 value 82.340494 iter 100 value 81.760420 final value 81.760420 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.605934 iter 10 value 94.056298 iter 20 value 93.792436 iter 30 value 93.334702 iter 40 value 85.838450 iter 50 value 85.299646 iter 60 value 84.069116 iter 70 value 83.939290 iter 80 value 83.928151 iter 80 value 83.928151 iter 80 value 83.928151 final value 83.928151 converged Fitting Repeat 5 # weights: 103 initial value 97.874061 iter 10 value 94.059048 iter 20 value 91.102493 iter 30 value 88.185033 iter 40 value 86.585228 iter 50 value 85.776343 iter 60 value 85.498368 iter 70 value 85.116799 iter 80 value 84.652879 iter 90 value 84.466442 iter 100 value 84.458536 final value 84.458536 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.792641 iter 10 value 94.719075 iter 20 value 90.541604 iter 30 value 86.868153 iter 40 value 85.750896 iter 50 value 85.278098 iter 60 value 83.213614 iter 70 value 82.751687 iter 80 value 82.622302 iter 90 value 82.213330 iter 100 value 81.895325 final value 81.895325 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.487765 iter 10 value 94.020062 iter 20 value 89.809209 iter 30 value 84.912668 iter 40 value 84.290117 iter 50 value 83.860552 iter 60 value 83.377875 iter 70 value 82.191912 iter 80 value 81.608960 iter 90 value 80.816853 iter 100 value 80.350901 final value 80.350901 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.381603 iter 10 value 93.463696 iter 20 value 91.061079 iter 30 value 86.439181 iter 40 value 83.168930 iter 50 value 82.221882 iter 60 value 81.783312 iter 70 value 81.687291 iter 80 value 81.376480 iter 90 value 80.597108 iter 100 value 80.412871 final value 80.412871 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.927632 iter 10 value 88.673170 iter 20 value 85.151000 iter 30 value 84.887453 iter 40 value 82.578518 iter 50 value 81.772393 iter 60 value 81.141225 iter 70 value 80.972735 iter 80 value 80.876578 iter 90 value 80.551873 iter 100 value 80.278626 final value 80.278626 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.111066 iter 10 value 94.763392 iter 20 value 94.135437 iter 30 value 94.059620 iter 40 value 87.294030 iter 50 value 85.896165 iter 60 value 85.166162 iter 70 value 84.889251 iter 80 value 82.957622 iter 90 value 82.490634 iter 100 value 82.069219 final value 82.069219 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.639738 iter 10 value 93.947698 iter 20 value 87.744913 iter 30 value 86.878844 iter 40 value 83.874813 iter 50 value 82.111589 iter 60 value 81.784823 iter 70 value 81.416000 iter 80 value 81.096748 iter 90 value 80.371041 iter 100 value 80.214917 final value 80.214917 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.061385 iter 10 value 94.087126 iter 20 value 92.777485 iter 30 value 86.445563 iter 40 value 85.783982 iter 50 value 83.573636 iter 60 value 81.328394 iter 70 value 81.059796 iter 80 value 80.690383 iter 90 value 80.437570 iter 100 value 80.358417 final value 80.358417 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.115250 iter 10 value 94.076309 iter 20 value 87.232574 iter 30 value 85.796289 iter 40 value 85.110654 iter 50 value 84.784862 iter 60 value 84.332539 iter 70 value 83.141158 iter 80 value 80.932354 iter 90 value 80.433637 iter 100 value 80.185644 final value 80.185644 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.001873 iter 10 value 94.206902 iter 20 value 93.988597 iter 30 value 88.085728 iter 40 value 87.731013 iter 50 value 86.830325 iter 60 value 84.359464 iter 70 value 84.011041 iter 80 value 83.767526 iter 90 value 82.390192 iter 100 value 80.900739 final value 80.900739 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 124.163131 iter 10 value 94.980118 iter 20 value 86.678248 iter 30 value 85.447483 iter 40 value 84.757289 iter 50 value 84.521427 iter 60 value 83.204911 iter 70 value 82.263848 iter 80 value 81.937425 iter 90 value 81.453848 iter 100 value 80.538657 final value 80.538657 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.835269 iter 10 value 94.054649 final value 94.052929 converged Fitting Repeat 2 # weights: 103 initial value 97.493274 final value 94.054614 converged Fitting Repeat 3 # weights: 103 initial value 101.483550 final value 94.054411 converged Fitting Repeat 4 # weights: 103 initial value 99.759997 final value 94.054449 converged Fitting Repeat 5 # weights: 103 initial value 97.443722 final value 94.054480 converged Fitting Repeat 1 # weights: 305 initial value 99.437572 iter 10 value 93.973557 iter 20 value 93.647301 iter 30 value 92.565673 iter 40 value 92.535250 iter 50 value 92.393259 iter 60 value 92.391831 final value 92.389940 converged Fitting Repeat 2 # weights: 305 initial value 104.974023 iter 10 value 94.013699 iter 20 value 93.958450 iter 20 value 93.958450 iter 30 value 89.042449 iter 40 value 86.861244 iter 50 value 85.899760 iter 60 value 85.897616 final value 85.897584 converged Fitting Repeat 3 # weights: 305 initial value 113.740150 iter 10 value 94.016537 iter 20 value 94.011669 iter 30 value 92.579009 iter 40 value 85.666473 iter 50 value 85.505946 final value 85.496177 converged Fitting Repeat 4 # weights: 305 initial value 110.010253 iter 10 value 94.057925 iter 20 value 93.991564 iter 30 value 84.680046 iter 40 value 84.022796 iter 50 value 84.012621 iter 60 value 83.856678 iter 70 value 83.852411 final value 83.852330 converged Fitting Repeat 5 # weights: 305 initial value 94.490675 iter 10 value 89.484524 iter 20 value 89.479096 iter 30 value 89.432010 iter 40 value 89.424528 iter 50 value 88.206541 iter 60 value 86.956747 iter 70 value 86.898664 iter 80 value 86.584439 iter 90 value 86.220664 iter 100 value 86.213192 final value 86.213192 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 95.909270 iter 10 value 87.880425 iter 20 value 83.167388 iter 30 value 81.874908 iter 40 value 81.597573 iter 50 value 81.595784 iter 60 value 81.593838 iter 70 value 81.165900 iter 80 value 80.985283 iter 90 value 80.977429 final value 80.977280 converged Fitting Repeat 2 # weights: 507 initial value 107.369868 iter 10 value 93.971025 iter 20 value 93.941276 iter 30 value 87.703603 iter 40 value 87.184195 iter 50 value 87.179923 iter 50 value 87.179922 iter 50 value 87.179922 final value 87.179922 converged Fitting Repeat 3 # weights: 507 initial value 113.410497 iter 10 value 94.019220 iter 20 value 94.018391 iter 30 value 94.011939 iter 40 value 84.192947 iter 50 value 83.991759 iter 60 value 83.510796 iter 70 value 83.424776 iter 80 value 82.457663 iter 90 value 82.176867 iter 100 value 81.862351 final value 81.862351 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.038151 iter 10 value 88.770685 iter 20 value 87.530424 iter 30 value 86.006717 iter 40 value 85.567242 iter 50 value 85.545048 iter 60 value 84.234592 iter 70 value 83.974858 iter 80 value 83.968102 iter 90 value 83.879647 iter 100 value 83.731603 final value 83.731603 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 99.060792 iter 10 value 92.162424 iter 20 value 84.090458 iter 30 value 82.895982 iter 40 value 82.858797 iter 50 value 82.822150 iter 60 value 82.820641 iter 70 value 82.817004 iter 80 value 81.848400 iter 90 value 81.127972 iter 100 value 81.045221 final value 81.045221 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.088937 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 107.891437 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.690815 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.805872 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.242304 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.531238 final value 94.354396 converged Fitting Repeat 2 # weights: 305 initial value 103.061731 iter 10 value 93.109894 final value 93.109890 converged Fitting Repeat 3 # weights: 305 initial value 113.496262 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.050608 final value 94.354396 converged Fitting Repeat 5 # weights: 305 initial value 105.534656 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 103.048187 final value 94.406131 converged Fitting Repeat 2 # weights: 507 initial value 108.712027 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 113.797145 final value 94.354396 converged Fitting Repeat 4 # weights: 507 initial value 106.407603 final value 94.289216 converged Fitting Repeat 5 # weights: 507 initial value 122.872782 iter 10 value 93.383169 final value 93.080392 converged Fitting Repeat 1 # weights: 103 initial value 105.454055 iter 10 value 94.353005 iter 20 value 87.938033 iter 30 value 86.915398 iter 40 value 86.732911 iter 50 value 86.466559 iter 60 value 84.933295 iter 70 value 84.802702 iter 80 value 84.668743 iter 90 value 84.621487 final value 84.621481 converged Fitting Repeat 2 # weights: 103 initial value 101.433172 iter 10 value 93.853999 iter 20 value 87.869152 iter 30 value 87.278937 iter 40 value 85.664739 iter 50 value 85.214426 iter 60 value 85.014232 iter 70 value 84.988658 iter 80 value 84.964727 iter 90 value 84.734590 iter 100 value 84.622341 final value 84.622341 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.027720 iter 10 value 94.484857 iter 20 value 92.765572 iter 30 value 87.660273 iter 40 value 86.258060 iter 50 value 85.182606 iter 60 value 85.072088 iter 70 value 84.987193 iter 80 value 84.745986 iter 90 value 84.712328 iter 100 value 84.640455 final value 84.640455 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.557901 iter 10 value 94.486723 iter 20 value 94.158333 iter 30 value 90.304577 iter 40 value 86.262105 iter 50 value 85.769974 iter 60 value 85.588625 iter 70 value 85.504843 iter 80 value 85.255853 iter 90 value 85.064606 final value 85.063694 converged Fitting Repeat 5 # weights: 103 initial value 100.766194 iter 10 value 93.966934 iter 20 value 86.965739 iter 30 value 86.899967 iter 40 value 86.845375 iter 50 value 85.114358 iter 60 value 84.830563 iter 70 value 84.782227 iter 80 value 84.637996 iter 90 value 84.621727 final value 84.621481 converged Fitting Repeat 1 # weights: 305 initial value 105.572039 iter 10 value 94.413684 iter 20 value 87.399893 iter 30 value 86.706250 iter 40 value 85.061227 iter 50 value 83.942015 iter 60 value 82.488853 iter 70 value 82.001504 iter 80 value 81.912936 iter 90 value 81.749859 iter 100 value 81.599638 final value 81.599638 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.192993 iter 10 value 94.492092 iter 20 value 94.203084 iter 30 value 88.843952 iter 40 value 86.742221 iter 50 value 86.255355 iter 60 value 84.118907 iter 70 value 82.821418 iter 80 value 82.612747 iter 90 value 82.530858 iter 100 value 82.492378 final value 82.492378 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.813362 iter 10 value 93.988103 iter 20 value 92.058755 iter 30 value 85.486952 iter 40 value 85.085671 iter 50 value 83.972105 iter 60 value 83.781025 iter 70 value 83.758896 iter 80 value 83.740222 iter 90 value 83.632430 iter 100 value 82.912197 final value 82.912197 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.917764 iter 10 value 94.608118 iter 20 value 88.156523 iter 30 value 84.959108 iter 40 value 84.033916 iter 50 value 83.220226 iter 60 value 83.075844 iter 70 value 82.873408 iter 80 value 82.776981 iter 90 value 82.025596 iter 100 value 81.667056 final value 81.667056 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.467744 iter 10 value 94.463656 iter 20 value 94.341150 iter 30 value 94.298448 iter 40 value 94.025481 iter 50 value 90.960265 iter 60 value 90.040507 iter 70 value 89.640520 iter 80 value 87.206114 iter 90 value 85.730868 iter 100 value 85.416818 final value 85.416818 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.671088 iter 10 value 91.679621 iter 20 value 87.700648 iter 30 value 85.049232 iter 40 value 84.554084 iter 50 value 83.696110 iter 60 value 82.393518 iter 70 value 82.070911 iter 80 value 81.991551 iter 90 value 81.880209 iter 100 value 81.801430 final value 81.801430 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.400569 iter 10 value 94.613948 iter 20 value 89.460562 iter 30 value 86.775066 iter 40 value 86.535844 iter 50 value 85.143965 iter 60 value 84.414458 iter 70 value 84.374612 iter 80 value 84.222111 iter 90 value 83.537682 iter 100 value 83.335214 final value 83.335214 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.648791 iter 10 value 94.594127 iter 20 value 94.470744 iter 30 value 94.388406 iter 40 value 89.891870 iter 50 value 86.647674 iter 60 value 86.480126 iter 70 value 86.420147 iter 80 value 84.797872 iter 90 value 82.987942 iter 100 value 82.658978 final value 82.658978 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 119.982267 iter 10 value 94.632544 iter 20 value 86.325405 iter 30 value 83.247834 iter 40 value 82.631677 iter 50 value 81.914147 iter 60 value 81.585074 iter 70 value 81.295599 iter 80 value 81.080284 iter 90 value 80.997923 iter 100 value 80.949965 final value 80.949965 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.778097 iter 10 value 99.492824 iter 20 value 94.123058 iter 30 value 93.528805 iter 40 value 88.188596 iter 50 value 85.949679 iter 60 value 84.409090 iter 70 value 84.217817 iter 80 value 84.012852 iter 90 value 83.914084 iter 100 value 83.530097 final value 83.530097 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.489778 final value 94.486211 converged Fitting Repeat 2 # weights: 103 initial value 95.290972 final value 94.485618 converged Fitting Repeat 3 # weights: 103 initial value 108.212258 final value 94.485969 converged Fitting Repeat 4 # weights: 103 initial value 95.590038 final value 94.485708 converged Fitting Repeat 5 # weights: 103 initial value 98.227662 final value 94.485719 converged Fitting Repeat 1 # weights: 305 initial value 107.621510 iter 10 value 94.359555 iter 20 value 86.332414 iter 30 value 83.909118 iter 40 value 83.732663 iter 50 value 83.717568 iter 60 value 83.555229 iter 70 value 83.498981 final value 83.498490 converged Fitting Repeat 2 # weights: 305 initial value 97.213465 iter 10 value 94.489246 iter 20 value 94.484248 iter 30 value 94.368980 iter 40 value 92.546306 iter 50 value 92.231253 iter 60 value 92.228885 iter 70 value 92.226103 iter 80 value 91.729961 final value 91.693226 converged Fitting Repeat 3 # weights: 305 initial value 105.587763 iter 10 value 94.489389 iter 20 value 94.481704 iter 30 value 94.290900 final value 94.289633 converged Fitting Repeat 4 # weights: 305 initial value 94.913840 iter 10 value 94.144446 iter 20 value 94.140595 iter 30 value 87.698165 iter 40 value 86.743898 iter 50 value 86.713728 iter 60 value 86.712922 iter 70 value 84.382071 iter 80 value 83.981885 iter 90 value 83.838732 iter 100 value 83.811315 final value 83.811315 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.834536 iter 10 value 94.359514 iter 20 value 94.052694 iter 30 value 88.351255 iter 40 value 85.683171 iter 50 value 85.616887 iter 60 value 85.581167 iter 70 value 85.578087 iter 80 value 85.571540 iter 90 value 85.498462 iter 100 value 85.484047 final value 85.484047 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 148.574293 iter 10 value 94.362952 iter 20 value 94.352477 iter 30 value 93.341166 iter 40 value 85.851873 iter 50 value 85.815771 iter 60 value 85.547701 iter 70 value 85.498432 iter 80 value 85.407364 iter 90 value 85.314877 iter 100 value 85.314198 final value 85.314198 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 129.950829 iter 10 value 94.031004 iter 20 value 85.838564 iter 30 value 85.819123 iter 40 value 85.692669 iter 50 value 85.689331 final value 85.689182 converged Fitting Repeat 3 # weights: 507 initial value 97.877828 iter 10 value 94.489226 iter 20 value 94.377995 iter 30 value 93.570164 iter 40 value 85.852936 iter 50 value 84.950247 iter 60 value 84.693845 iter 70 value 84.480848 iter 80 value 84.478076 iter 90 value 84.477760 iter 100 value 84.477480 final value 84.477480 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.820313 iter 10 value 92.010795 iter 20 value 91.540341 iter 30 value 91.306466 iter 40 value 90.856936 iter 50 value 90.846099 iter 60 value 90.844986 final value 90.843947 converged Fitting Repeat 5 # weights: 507 initial value 117.116530 iter 10 value 94.492028 iter 20 value 94.483551 iter 30 value 89.868857 iter 40 value 88.029344 iter 50 value 86.831593 iter 60 value 86.286477 iter 70 value 86.189128 final value 86.189059 converged Fitting Repeat 1 # weights: 103 initial value 104.271198 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.857677 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 100.510178 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 100.035729 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.542965 final value 94.032967 converged Fitting Repeat 1 # weights: 305 initial value 109.959294 final value 94.032967 converged Fitting Repeat 2 # weights: 305 initial value 103.696843 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 99.131400 iter 10 value 82.381683 iter 20 value 81.922257 iter 30 value 81.533875 iter 30 value 81.533875 iter 30 value 81.533875 final value 81.533875 converged Fitting Repeat 4 # weights: 305 initial value 112.886161 iter 10 value 93.653870 iter 10 value 93.653870 iter 10 value 93.653870 final value 93.653870 converged Fitting Repeat 5 # weights: 305 initial value 102.786619 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 97.157031 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 106.995493 final value 92.701657 converged Fitting Repeat 3 # weights: 507 initial value 132.702206 iter 10 value 93.573671 final value 93.573670 converged Fitting Repeat 4 # weights: 507 initial value 97.026833 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 108.431950 final value 94.052911 converged Fitting Repeat 1 # weights: 103 initial value 98.318389 iter 10 value 94.055277 iter 20 value 93.190467 iter 30 value 84.288525 iter 40 value 83.496945 iter 50 value 83.026398 iter 60 value 82.665334 iter 70 value 82.646428 iter 70 value 82.646427 iter 70 value 82.646427 final value 82.646427 converged Fitting Repeat 2 # weights: 103 initial value 102.405327 iter 10 value 94.056672 iter 20 value 93.699854 iter 30 value 93.308520 iter 40 value 93.247622 iter 50 value 93.201144 iter 60 value 91.941996 iter 70 value 86.974865 iter 80 value 86.532198 iter 90 value 82.777584 iter 100 value 82.271175 final value 82.271175 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.039777 iter 10 value 93.978412 iter 20 value 93.233839 iter 30 value 83.546610 iter 40 value 82.430127 iter 50 value 82.109687 iter 60 value 82.065330 iter 70 value 82.064532 final value 82.064523 converged Fitting Repeat 4 # weights: 103 initial value 105.917693 iter 10 value 93.260031 iter 20 value 83.703599 iter 30 value 82.260962 iter 40 value 82.103835 iter 50 value 82.076701 iter 60 value 82.064524 final value 82.064522 converged Fitting Repeat 5 # weights: 103 initial value 101.512011 iter 10 value 93.954827 iter 20 value 86.557743 iter 30 value 82.823607 iter 40 value 81.022091 iter 50 value 80.490212 iter 60 value 79.731755 iter 70 value 79.625696 iter 80 value 79.568883 iter 90 value 79.202179 iter 100 value 78.907897 final value 78.907897 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.928941 iter 10 value 93.893470 iter 20 value 86.424988 iter 30 value 86.146377 iter 40 value 84.316640 iter 50 value 82.333721 iter 60 value 80.276248 iter 70 value 79.024835 iter 80 value 78.742342 iter 90 value 77.782046 iter 100 value 77.251732 final value 77.251732 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.862819 iter 10 value 93.982983 iter 20 value 87.554371 iter 30 value 83.635835 iter 40 value 82.330872 iter 50 value 82.148189 iter 60 value 82.013546 iter 70 value 81.243005 iter 80 value 80.218877 iter 90 value 79.481289 iter 100 value 79.138445 final value 79.138445 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.332280 iter 10 value 93.259755 iter 20 value 83.624561 iter 30 value 83.435583 iter 40 value 82.430842 iter 50 value 80.479676 iter 60 value 79.727871 iter 70 value 78.583291 iter 80 value 77.730962 iter 90 value 77.605883 iter 100 value 77.597205 final value 77.597205 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.455420 iter 10 value 93.743155 iter 20 value 93.227755 iter 30 value 92.872821 iter 40 value 84.733997 iter 50 value 83.237649 iter 60 value 82.740615 iter 70 value 81.282010 iter 80 value 79.935585 iter 90 value 79.722990 iter 100 value 79.019709 final value 79.019709 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.375820 iter 10 value 94.212379 iter 20 value 93.766816 iter 30 value 91.552262 iter 40 value 87.969578 iter 50 value 86.500780 iter 60 value 82.418608 iter 70 value 81.705205 iter 80 value 80.059295 iter 90 value 79.905185 iter 100 value 79.403885 final value 79.403885 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.958463 iter 10 value 93.755504 iter 20 value 89.195990 iter 30 value 83.020820 iter 40 value 81.042655 iter 50 value 79.387259 iter 60 value 79.021089 iter 70 value 78.537904 iter 80 value 77.928972 iter 90 value 77.844586 iter 100 value 77.782485 final value 77.782485 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 125.340970 iter 10 value 95.143360 iter 20 value 89.246471 iter 30 value 84.892325 iter 40 value 83.109068 iter 50 value 82.087336 iter 60 value 80.389430 iter 70 value 79.304822 iter 80 value 78.154713 iter 90 value 77.422024 iter 100 value 77.184230 final value 77.184230 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 124.707950 iter 10 value 94.809371 iter 20 value 84.891290 iter 30 value 81.554140 iter 40 value 79.426204 iter 50 value 78.062667 iter 60 value 77.740704 iter 70 value 77.476146 iter 80 value 77.200222 iter 90 value 76.862933 iter 100 value 76.730507 final value 76.730507 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.477040 iter 10 value 93.987031 iter 20 value 83.659422 iter 30 value 82.214744 iter 40 value 81.703967 iter 50 value 80.551261 iter 60 value 79.210014 iter 70 value 77.894249 iter 80 value 77.648385 iter 90 value 77.314388 iter 100 value 77.140940 final value 77.140940 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.505614 iter 10 value 93.777241 iter 20 value 92.858661 iter 30 value 82.218579 iter 40 value 81.738059 iter 50 value 81.350327 iter 60 value 79.766523 iter 70 value 78.884184 iter 80 value 78.404877 iter 90 value 78.146615 iter 100 value 77.841694 final value 77.841694 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.160820 final value 94.054631 converged Fitting Repeat 2 # weights: 103 initial value 102.148149 iter 10 value 94.054713 iter 20 value 94.052897 iter 30 value 93.126413 iter 40 value 92.497680 iter 50 value 86.456165 iter 60 value 86.422342 iter 70 value 86.418139 iter 80 value 86.416437 iter 90 value 86.416017 iter 100 value 86.415482 final value 86.415482 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.400987 final value 93.606328 converged Fitting Repeat 4 # weights: 103 initial value 94.182062 final value 94.054453 converged Fitting Repeat 5 # weights: 103 initial value 106.259080 final value 94.054417 converged Fitting Repeat 1 # weights: 305 initial value 96.320147 iter 10 value 94.058348 iter 20 value 94.053212 iter 30 value 92.897619 final value 92.893090 converged Fitting Repeat 2 # weights: 305 initial value 96.051664 iter 10 value 94.037943 iter 20 value 93.839884 iter 30 value 80.984556 iter 40 value 80.961613 iter 50 value 78.620471 iter 60 value 78.614318 iter 70 value 78.610495 iter 80 value 78.609439 iter 90 value 78.607937 final value 78.607893 converged Fitting Repeat 3 # weights: 305 initial value 104.734702 iter 10 value 94.037942 iter 20 value 93.698865 iter 30 value 93.093760 iter 40 value 93.091108 final value 93.091106 converged Fitting Repeat 4 # weights: 305 initial value 106.604203 iter 10 value 94.095649 iter 20 value 94.080016 iter 30 value 83.906803 iter 40 value 81.008989 iter 50 value 81.007962 iter 60 value 81.004793 iter 70 value 80.792576 iter 80 value 80.781414 iter 90 value 79.641483 iter 100 value 77.858185 final value 77.858185 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.213397 iter 10 value 93.609641 iter 20 value 93.605204 iter 30 value 93.573941 final value 93.573878 converged Fitting Repeat 1 # weights: 507 initial value 100.701405 iter 10 value 91.825610 iter 20 value 82.138049 iter 30 value 82.031626 iter 40 value 81.964417 iter 50 value 80.720603 iter 60 value 80.693767 iter 70 value 80.689048 iter 80 value 80.663762 iter 90 value 80.663332 iter 100 value 80.661899 final value 80.661899 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.313457 iter 10 value 94.061570 iter 20 value 94.052252 iter 30 value 92.703161 final value 92.702932 converged Fitting Repeat 3 # weights: 507 initial value 97.366780 iter 10 value 92.436903 iter 20 value 90.428721 iter 30 value 84.972901 iter 40 value 83.737633 final value 83.734265 converged Fitting Repeat 4 # weights: 507 initial value 111.161822 iter 10 value 94.060647 iter 20 value 93.619637 iter 30 value 90.495135 iter 40 value 90.064936 final value 90.061268 converged Fitting Repeat 5 # weights: 507 initial value 98.228515 iter 10 value 94.040603 iter 20 value 93.769532 iter 30 value 86.363217 iter 40 value 82.516121 iter 50 value 82.088725 iter 60 value 81.471551 iter 70 value 80.969511 iter 80 value 80.893058 iter 90 value 80.891318 iter 100 value 80.830489 final value 80.830489 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 141.392511 iter 10 value 118.042462 iter 20 value 110.961356 iter 30 value 106.486366 iter 40 value 105.880208 iter 50 value 105.478796 iter 60 value 101.745929 iter 70 value 101.373265 iter 80 value 100.949142 iter 90 value 100.565022 iter 100 value 100.387078 final value 100.387078 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 129.950853 iter 10 value 118.303222 iter 20 value 112.282174 iter 30 value 105.229899 iter 40 value 103.800555 iter 50 value 102.838299 iter 60 value 101.809254 iter 70 value 100.798056 iter 80 value 100.587388 iter 90 value 100.372906 iter 100 value 100.159336 final value 100.159336 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 199.257331 iter 10 value 119.077091 iter 20 value 117.463666 iter 30 value 107.955275 iter 40 value 106.362533 iter 50 value 105.788312 iter 60 value 103.981750 iter 70 value 102.335355 iter 80 value 101.459662 iter 90 value 101.248446 iter 100 value 100.958583 final value 100.958583 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 144.992140 iter 10 value 117.903280 iter 20 value 107.896514 iter 30 value 106.138432 iter 40 value 103.214636 iter 50 value 102.029836 iter 60 value 101.482025 iter 70 value 101.373079 iter 80 value 101.238811 iter 90 value 100.755382 iter 100 value 100.371944 final value 100.371944 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 127.068861 iter 10 value 117.817621 iter 20 value 116.282670 iter 30 value 109.536422 iter 40 value 105.620466 iter 50 value 104.387447 iter 60 value 103.897359 iter 70 value 103.777625 iter 80 value 102.835265 iter 90 value 102.208300 iter 100 value 101.455244 final value 101.455244 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Mar 18 08:39:33 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 52.637 1.062 144.087
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.130 | 0.200 | 34.406 | |
FreqInteractors | 0.271 | 0.015 | 0.287 | |
calculateAAC | 0.033 | 0.011 | 0.046 | |
calculateAutocor | 0.636 | 0.024 | 0.664 | |
calculateCTDC | 0.094 | 0.000 | 0.094 | |
calculateCTDD | 0.693 | 0.004 | 0.699 | |
calculateCTDT | 0.237 | 0.003 | 0.241 | |
calculateCTriad | 0.448 | 0.012 | 0.461 | |
calculateDC | 0.122 | 0.000 | 0.122 | |
calculateF | 0.409 | 0.004 | 0.413 | |
calculateKSAAP | 0.141 | 0.000 | 0.142 | |
calculateQD_Sm | 2.172 | 0.044 | 2.221 | |
calculateTC | 2.275 | 0.008 | 2.288 | |
calculateTC_Sm | 0.288 | 0.000 | 0.288 | |
corr_plot | 33.924 | 0.324 | 34.319 | |
enrichfindP | 0.499 | 0.016 | 20.514 | |
enrichfind_hp | 0.077 | 0.000 | 1.517 | |
enrichplot | 0.484 | 0.004 | 0.489 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.121 | 0.008 | 5.603 | |
getHPI | 0.000 | 0.001 | 0.000 | |
get_negativePPI | 0.000 | 0.002 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.000 | 0.002 | |
plotPPI | 0.074 | 0.004 | 0.078 | |
pred_ensembel | 17.566 | 0.187 | 16.540 | |
var_imp | 34.008 | 0.347 | 34.434 | |