Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-02-03 12:05 -0500 (Mon, 03 Feb 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4746 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4494 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4517 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4469 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4400 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-01-30 23:05:02 -0500 (Thu, 30 Jan 2025) |
EndedAt: 2025-01-30 23:19:03 -0500 (Thu, 30 Jan 2025) |
EllapsedTime: 840.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0 * running under: Ubuntu 24.04.1 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 33.823 0.491 34.315 var_imp 33.305 0.415 33.787 corr_plot 33.270 0.183 33.526 pred_ensembel 12.613 0.274 11.623 enrichfindP 0.515 0.028 8.155 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 97.188486 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.773882 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.529227 iter 10 value 92.391421 iter 20 value 90.736615 iter 30 value 79.798872 iter 40 value 79.757643 final value 79.754110 converged Fitting Repeat 4 # weights: 103 initial value 94.604768 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.962941 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 109.194037 iter 10 value 87.765927 final value 87.709921 converged Fitting Repeat 2 # weights: 305 initial value 103.962039 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 97.086076 final value 93.869756 converged Fitting Repeat 4 # weights: 305 initial value 104.577317 iter 10 value 93.122669 iter 20 value 93.082837 iter 30 value 93.082085 iter 40 value 92.736071 final value 92.736025 converged Fitting Repeat 5 # weights: 305 initial value 95.621795 iter 10 value 83.252360 iter 20 value 82.514680 iter 30 value 82.260761 iter 40 value 82.187148 iter 50 value 82.092664 iter 60 value 82.087436 iter 70 value 82.083537 iter 80 value 82.077052 iter 80 value 82.077052 iter 80 value 82.077052 final value 82.077052 converged Fitting Repeat 1 # weights: 507 initial value 104.087099 iter 10 value 91.830073 final value 91.824176 converged Fitting Repeat 2 # weights: 507 initial value 119.375930 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 100.252079 iter 10 value 91.664725 iter 20 value 87.406988 iter 30 value 86.952679 iter 40 value 86.947638 iter 50 value 86.946529 final value 86.946473 converged Fitting Repeat 4 # weights: 507 initial value 103.607477 iter 10 value 87.628103 iter 20 value 84.952664 final value 84.935829 converged Fitting Repeat 5 # weights: 507 initial value 104.667496 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 96.446744 iter 10 value 94.059917 iter 20 value 93.944802 iter 30 value 86.604565 iter 40 value 83.708718 iter 50 value 82.085304 iter 60 value 81.719086 iter 70 value 81.671101 iter 80 value 81.662575 final value 81.662496 converged Fitting Repeat 2 # weights: 103 initial value 96.658811 iter 10 value 93.956904 iter 20 value 84.205165 iter 30 value 82.537863 iter 40 value 81.951050 iter 50 value 81.884499 iter 60 value 81.727148 iter 70 value 81.709784 iter 80 value 81.703663 iter 90 value 81.699723 iter 100 value 81.694418 final value 81.694418 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 106.128716 iter 10 value 94.030780 iter 20 value 86.079128 iter 30 value 84.238823 iter 40 value 81.175106 iter 50 value 81.162283 iter 60 value 81.151636 iter 70 value 81.128250 final value 81.127584 converged Fitting Repeat 4 # weights: 103 initial value 96.341631 iter 10 value 94.056572 iter 20 value 91.760689 iter 30 value 90.093895 iter 40 value 84.177228 iter 50 value 83.848398 iter 60 value 81.782484 iter 70 value 81.667544 iter 80 value 81.662498 final value 81.662496 converged Fitting Repeat 5 # weights: 103 initial value 100.132766 iter 10 value 94.044586 iter 20 value 92.699209 iter 30 value 88.317096 iter 40 value 86.411019 iter 50 value 86.312740 iter 60 value 86.307326 iter 70 value 81.938839 iter 80 value 81.664091 iter 90 value 81.662504 final value 81.662496 converged Fitting Repeat 1 # weights: 305 initial value 112.594792 iter 10 value 89.998410 iter 20 value 88.961618 iter 30 value 84.582981 iter 40 value 81.859842 iter 50 value 81.629733 iter 60 value 81.452521 iter 70 value 80.892235 iter 80 value 80.439155 iter 90 value 80.356664 iter 100 value 80.256715 final value 80.256715 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.500325 iter 10 value 93.884242 iter 20 value 84.917563 iter 30 value 82.006062 iter 40 value 81.636055 iter 50 value 81.354104 iter 60 value 80.832581 iter 70 value 79.612742 iter 80 value 79.436048 iter 90 value 79.284464 iter 100 value 78.921674 final value 78.921674 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.646705 iter 10 value 92.722146 iter 20 value 82.160461 iter 30 value 81.363917 iter 40 value 79.423528 iter 50 value 79.279953 iter 60 value 79.245001 iter 70 value 79.072161 iter 80 value 78.455651 iter 90 value 78.372160 iter 100 value 78.262561 final value 78.262561 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 115.169454 iter 10 value 96.881148 iter 20 value 87.101413 iter 30 value 84.371427 iter 40 value 84.214606 iter 50 value 81.768977 iter 60 value 80.287511 iter 70 value 80.075898 iter 80 value 79.578568 iter 90 value 79.218893 iter 100 value 78.973840 final value 78.973840 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.616917 iter 10 value 94.015775 iter 20 value 89.156536 iter 30 value 81.845765 iter 40 value 81.303079 iter 50 value 80.957503 iter 60 value 80.727065 iter 70 value 80.411325 iter 80 value 80.355151 iter 90 value 80.266584 iter 100 value 80.262753 final value 80.262753 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.027315 iter 10 value 94.071075 iter 20 value 93.921290 iter 30 value 91.864119 iter 40 value 84.377362 iter 50 value 82.564153 iter 60 value 80.603902 iter 70 value 79.752450 iter 80 value 79.285169 iter 90 value 79.203364 iter 100 value 79.103432 final value 79.103432 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.049798 iter 10 value 94.306348 iter 20 value 92.957870 iter 30 value 88.665262 iter 40 value 84.823526 iter 50 value 83.270301 iter 60 value 82.845175 iter 70 value 80.699209 iter 80 value 79.825652 iter 90 value 79.405921 iter 100 value 78.854773 final value 78.854773 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.343862 iter 10 value 94.214625 iter 20 value 89.920043 iter 30 value 83.441264 iter 40 value 80.944331 iter 50 value 80.702176 iter 60 value 80.068552 iter 70 value 79.980384 iter 80 value 79.595265 iter 90 value 79.080316 iter 100 value 78.423733 final value 78.423733 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.649549 iter 10 value 94.868599 iter 20 value 89.337418 iter 30 value 84.052966 iter 40 value 82.434469 iter 50 value 81.294247 iter 60 value 81.078731 iter 70 value 80.821685 iter 80 value 80.772222 iter 90 value 80.719339 iter 100 value 80.154791 final value 80.154791 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.114993 iter 10 value 88.574776 iter 20 value 85.327381 iter 30 value 83.357507 iter 40 value 80.671012 iter 50 value 79.946964 iter 60 value 79.860413 iter 70 value 79.531621 iter 80 value 79.253840 iter 90 value 78.552290 iter 100 value 78.431785 final value 78.431785 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.734688 final value 94.054621 converged Fitting Repeat 2 # weights: 103 initial value 95.814972 final value 94.034508 converged Fitting Repeat 3 # weights: 103 initial value 104.177492 final value 94.054405 converged Fitting Repeat 4 # weights: 103 initial value 96.586441 iter 10 value 94.054996 iter 20 value 94.027756 iter 30 value 93.537933 iter 40 value 93.537650 final value 93.537648 converged Fitting Repeat 5 # weights: 103 initial value 94.302151 final value 94.054156 converged Fitting Repeat 1 # weights: 305 initial value 113.528420 iter 10 value 94.058202 iter 20 value 94.052995 iter 30 value 85.908016 iter 40 value 84.942695 iter 40 value 84.942695 iter 40 value 84.942695 final value 84.942695 converged Fitting Repeat 2 # weights: 305 initial value 96.207832 iter 10 value 94.057459 iter 20 value 94.029832 iter 30 value 91.560436 iter 40 value 85.973808 iter 50 value 84.866495 iter 60 value 84.841387 iter 70 value 84.836926 final value 84.836763 converged Fitting Repeat 3 # weights: 305 initial value 95.166911 iter 10 value 91.834352 iter 20 value 91.830348 iter 30 value 91.685290 iter 40 value 91.638496 iter 50 value 91.630134 iter 60 value 91.625612 iter 70 value 91.625577 final value 91.625475 converged Fitting Repeat 4 # weights: 305 initial value 116.419613 iter 10 value 94.058148 iter 20 value 94.053085 iter 30 value 92.518446 iter 40 value 85.760654 iter 50 value 82.982617 iter 60 value 79.639264 iter 70 value 79.058991 iter 80 value 78.988133 iter 90 value 78.985737 iter 100 value 78.939375 final value 78.939375 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 97.776498 iter 10 value 94.038034 iter 20 value 93.630466 iter 30 value 84.969142 iter 40 value 83.674982 iter 50 value 82.738312 iter 60 value 80.816225 iter 70 value 79.851377 iter 80 value 79.843753 iter 90 value 79.843071 iter 100 value 79.838837 final value 79.838837 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 98.565962 iter 10 value 93.820899 iter 20 value 93.816667 iter 30 value 93.774627 iter 40 value 87.478317 iter 50 value 84.803533 iter 60 value 83.112783 iter 70 value 80.855853 iter 80 value 80.117761 iter 90 value 78.623585 iter 100 value 78.328704 final value 78.328704 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.415846 iter 10 value 94.050031 iter 20 value 94.040541 iter 30 value 93.975312 iter 40 value 93.646071 iter 50 value 93.196788 iter 60 value 89.908914 iter 70 value 89.576295 iter 80 value 89.574619 iter 90 value 88.273100 iter 100 value 84.350354 final value 84.350354 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.960257 iter 10 value 94.060899 iter 20 value 94.051891 iter 30 value 93.603502 iter 40 value 93.601640 iter 40 value 93.601640 iter 40 value 93.601639 final value 93.601639 converged Fitting Repeat 4 # weights: 507 initial value 114.102736 iter 10 value 94.041771 iter 20 value 88.791060 iter 30 value 82.861781 iter 40 value 82.829925 iter 50 value 82.823663 iter 60 value 82.818519 final value 82.814854 converged Fitting Repeat 5 # weights: 507 initial value 109.903601 iter 10 value 94.040856 iter 20 value 93.233932 iter 30 value 82.807506 iter 40 value 82.707672 iter 50 value 82.556566 iter 60 value 82.530143 iter 70 value 82.529023 iter 80 value 82.491661 iter 90 value 81.567259 iter 100 value 78.880333 final value 78.880333 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.855726 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.628940 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.974829 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.075743 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.703499 iter 10 value 94.325948 final value 94.325945 converged Fitting Repeat 1 # weights: 305 initial value 107.258382 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 104.900923 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.357876 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.424817 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 97.891906 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 105.377236 iter 10 value 93.744879 iter 20 value 93.642934 iter 20 value 93.642934 iter 20 value 93.642934 final value 93.642934 converged Fitting Repeat 2 # weights: 507 initial value 97.775525 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 104.707135 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 109.750682 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 114.276537 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 103.656404 iter 10 value 94.486452 iter 20 value 91.086091 iter 30 value 88.946464 iter 40 value 86.212163 iter 50 value 85.758397 iter 60 value 85.422529 iter 70 value 85.414173 final value 85.414145 converged Fitting Repeat 2 # weights: 103 initial value 102.497813 iter 10 value 94.538830 iter 20 value 94.486729 iter 30 value 94.131871 iter 40 value 92.958251 iter 50 value 84.319002 iter 60 value 83.478612 iter 70 value 83.071376 iter 80 value 82.880289 iter 90 value 82.278596 iter 100 value 81.372833 final value 81.372833 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.619524 iter 10 value 93.290760 iter 20 value 92.802252 iter 30 value 90.165148 iter 40 value 89.155202 iter 50 value 87.648852 iter 60 value 84.380912 iter 70 value 83.719051 iter 80 value 82.242449 iter 90 value 81.508073 iter 100 value 81.435537 final value 81.435537 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.757802 iter 10 value 94.444789 iter 20 value 93.883043 iter 30 value 93.643669 iter 40 value 93.335424 iter 50 value 93.304598 iter 60 value 87.762009 iter 70 value 83.609251 iter 80 value 82.729513 iter 90 value 82.548495 iter 100 value 82.246950 final value 82.246950 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.442811 iter 10 value 94.162927 iter 20 value 87.947560 iter 30 value 85.608305 iter 40 value 85.208747 iter 50 value 84.505128 iter 60 value 83.367181 iter 70 value 83.259873 iter 80 value 83.141292 iter 90 value 82.851880 iter 100 value 82.760813 final value 82.760813 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.024736 iter 10 value 95.160964 iter 20 value 94.539350 iter 30 value 93.719282 iter 40 value 93.472638 iter 50 value 88.014485 iter 60 value 86.796409 iter 70 value 85.836021 iter 80 value 85.625839 iter 90 value 84.573378 iter 100 value 83.197987 final value 83.197987 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.233240 iter 10 value 94.823739 iter 20 value 91.741108 iter 30 value 88.266151 iter 40 value 85.332089 iter 50 value 83.412747 iter 60 value 82.675895 iter 70 value 82.638042 iter 80 value 82.614126 iter 90 value 82.603312 iter 100 value 82.600726 final value 82.600726 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 121.783932 iter 10 value 94.776014 iter 20 value 94.333502 iter 30 value 92.988061 iter 40 value 92.052571 iter 50 value 89.755399 iter 60 value 88.771305 iter 70 value 87.312648 iter 80 value 83.332589 iter 90 value 80.760060 iter 100 value 80.139806 final value 80.139806 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.406491 iter 10 value 94.665006 iter 20 value 89.797527 iter 30 value 84.272538 iter 40 value 82.814052 iter 50 value 81.563961 iter 60 value 81.225734 iter 70 value 81.046355 iter 80 value 80.937778 iter 90 value 80.744292 iter 100 value 80.597454 final value 80.597454 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.151147 iter 10 value 93.841512 iter 20 value 87.140356 iter 30 value 86.394977 iter 40 value 85.653709 iter 50 value 84.236013 iter 60 value 81.240312 iter 70 value 80.747330 iter 80 value 80.469526 iter 90 value 80.030392 iter 100 value 79.949500 final value 79.949500 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.698820 iter 10 value 93.513675 iter 20 value 87.021397 iter 30 value 85.314015 iter 40 value 83.618295 iter 50 value 80.842763 iter 60 value 80.635486 iter 70 value 80.329007 iter 80 value 80.099809 iter 90 value 79.933026 iter 100 value 79.839612 final value 79.839612 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.308199 iter 10 value 96.031894 iter 20 value 87.767120 iter 30 value 84.841448 iter 40 value 84.324147 iter 50 value 83.649094 iter 60 value 81.349233 iter 70 value 80.757459 iter 80 value 80.613624 iter 90 value 80.501720 iter 100 value 80.325680 final value 80.325680 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 120.569751 iter 10 value 94.253182 iter 20 value 91.619103 iter 30 value 91.510602 iter 40 value 90.959852 iter 50 value 88.385965 iter 60 value 83.979573 iter 70 value 83.199641 iter 80 value 82.754060 iter 90 value 81.863133 iter 100 value 81.615741 final value 81.615741 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.298955 iter 10 value 94.541390 iter 20 value 93.958243 iter 30 value 90.797893 iter 40 value 85.653853 iter 50 value 83.198374 iter 60 value 81.806534 iter 70 value 80.695012 iter 80 value 80.477601 iter 90 value 80.384503 iter 100 value 80.242245 final value 80.242245 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.757925 iter 10 value 95.415689 iter 20 value 92.826000 iter 30 value 85.550476 iter 40 value 84.780883 iter 50 value 83.303465 iter 60 value 82.520270 iter 70 value 82.091931 iter 80 value 81.957117 iter 90 value 81.747554 iter 100 value 81.188426 final value 81.188426 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.172576 final value 94.486012 converged Fitting Repeat 2 # weights: 103 initial value 107.027091 final value 94.485913 converged Fitting Repeat 3 # weights: 103 initial value 98.478560 final value 94.486038 converged Fitting Repeat 4 # weights: 103 initial value 95.308969 final value 94.485817 converged Fitting Repeat 5 # weights: 103 initial value 99.709662 iter 10 value 86.148056 iter 20 value 85.375860 iter 30 value 85.375464 iter 40 value 85.373077 iter 50 value 85.173060 final value 85.172557 converged Fitting Repeat 1 # weights: 305 initial value 106.438797 iter 10 value 94.489637 iter 20 value 94.428298 iter 30 value 91.252093 iter 40 value 84.192677 iter 50 value 81.670102 iter 60 value 81.312312 final value 81.250252 converged Fitting Repeat 2 # weights: 305 initial value 95.858439 iter 10 value 93.778374 iter 20 value 93.777882 iter 30 value 93.406930 iter 40 value 86.928040 iter 50 value 86.619987 iter 60 value 85.521906 final value 85.485551 converged Fitting Repeat 3 # weights: 305 initial value 113.057246 iter 10 value 93.778448 iter 20 value 93.777394 iter 30 value 90.180698 iter 40 value 83.122722 iter 50 value 82.533546 iter 60 value 81.937403 iter 70 value 81.934335 final value 81.934313 converged Fitting Repeat 4 # weights: 305 initial value 101.371013 iter 10 value 93.877525 iter 20 value 93.875476 iter 30 value 93.871572 iter 40 value 93.718234 iter 50 value 92.706575 final value 92.706556 converged Fitting Repeat 5 # weights: 305 initial value 98.136615 iter 10 value 94.489288 iter 20 value 94.377781 iter 30 value 86.448348 iter 40 value 86.386374 iter 50 value 86.319707 iter 60 value 86.319338 final value 86.317254 converged Fitting Repeat 1 # weights: 507 initial value 110.591460 iter 10 value 93.781775 iter 20 value 93.780447 iter 30 value 93.772920 iter 40 value 91.570957 iter 50 value 91.557720 final value 91.557636 converged Fitting Repeat 2 # weights: 507 initial value 108.437169 iter 10 value 93.781822 iter 20 value 93.777009 iter 30 value 89.009053 iter 40 value 85.375714 iter 50 value 85.322670 iter 60 value 85.313632 iter 70 value 85.289571 iter 80 value 85.096018 iter 90 value 85.043163 iter 100 value 85.020327 final value 85.020327 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.241625 iter 10 value 93.030971 iter 20 value 93.029210 iter 30 value 92.950628 iter 40 value 92.837151 iter 50 value 92.833968 iter 60 value 92.831330 final value 92.830713 converged Fitting Repeat 4 # weights: 507 initial value 104.823780 iter 10 value 93.954523 iter 20 value 93.903913 iter 30 value 93.898339 iter 40 value 85.676077 iter 50 value 85.215406 iter 60 value 84.561478 final value 84.543819 converged Fitting Repeat 5 # weights: 507 initial value 98.549418 iter 10 value 93.651976 iter 20 value 93.650509 iter 30 value 92.975790 iter 40 value 83.901204 iter 50 value 81.999579 iter 60 value 81.846192 iter 70 value 81.756766 iter 80 value 81.723295 iter 90 value 81.704198 iter 100 value 81.668290 final value 81.668290 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.348007 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 94.499744 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.569221 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.883752 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.868917 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.488810 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 99.344820 iter 10 value 94.251208 final value 94.057229 converged Fitting Repeat 3 # weights: 305 initial value 106.525437 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 100.182151 iter 10 value 94.362108 iter 20 value 92.767841 iter 30 value 88.264965 iter 40 value 87.535170 iter 50 value 87.528412 iter 60 value 87.254651 iter 70 value 86.796971 iter 80 value 86.759377 final value 86.759329 converged Fitting Repeat 5 # weights: 305 initial value 96.492703 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 101.591456 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 99.078853 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 102.634207 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 113.218175 iter 10 value 94.065749 iter 20 value 93.907233 final value 93.907229 converged Fitting Repeat 5 # weights: 507 initial value 121.738477 iter 10 value 94.443449 final value 94.443243 converged Fitting Repeat 1 # weights: 103 initial value 103.575079 iter 10 value 94.210394 iter 20 value 92.606848 iter 30 value 92.422980 iter 40 value 92.394314 iter 50 value 90.829394 iter 60 value 90.648116 iter 70 value 90.644876 iter 80 value 90.644614 final value 90.644612 converged Fitting Repeat 2 # weights: 103 initial value 96.406565 iter 10 value 94.489225 iter 20 value 93.024720 iter 30 value 87.625338 iter 40 value 85.302836 iter 50 value 84.686807 iter 60 value 84.532929 iter 70 value 84.359186 iter 80 value 83.850245 iter 90 value 83.425835 iter 100 value 83.197165 final value 83.197165 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.507424 iter 10 value 92.056532 iter 20 value 89.953002 iter 30 value 86.136059 iter 40 value 85.953932 iter 50 value 84.964409 iter 60 value 84.957026 final value 84.956271 converged Fitting Repeat 4 # weights: 103 initial value 104.565739 iter 10 value 94.471656 iter 20 value 93.574060 iter 30 value 92.464010 iter 40 value 89.480716 iter 50 value 87.676681 iter 60 value 87.101728 iter 70 value 86.377231 iter 80 value 85.341957 iter 90 value 85.328552 iter 100 value 85.326914 final value 85.326914 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.491571 iter 10 value 94.445162 iter 20 value 91.358030 iter 30 value 89.263496 iter 40 value 85.369376 iter 50 value 83.297299 iter 60 value 82.767373 iter 70 value 82.463265 iter 80 value 82.339795 final value 82.323772 converged Fitting Repeat 1 # weights: 305 initial value 101.843165 iter 10 value 94.309795 iter 20 value 85.653323 iter 30 value 85.107545 iter 40 value 84.942505 iter 50 value 84.660875 iter 60 value 83.494322 iter 70 value 83.284792 iter 80 value 82.367452 iter 90 value 81.734044 iter 100 value 81.485492 final value 81.485492 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 115.801187 iter 10 value 94.710939 iter 20 value 94.490979 iter 30 value 93.155922 iter 40 value 89.001918 iter 50 value 86.709708 iter 60 value 86.547015 iter 70 value 86.072085 iter 80 value 85.740873 iter 90 value 85.263514 iter 100 value 83.962723 final value 83.962723 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.514605 iter 10 value 94.121233 iter 20 value 89.249054 iter 30 value 87.816837 iter 40 value 86.943731 iter 50 value 85.586092 iter 60 value 85.470026 iter 70 value 83.847925 iter 80 value 83.168006 iter 90 value 82.884687 iter 100 value 82.818322 final value 82.818322 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.911824 iter 10 value 94.404109 iter 20 value 91.925466 iter 30 value 90.679414 iter 40 value 88.136050 iter 50 value 86.177235 iter 60 value 84.857385 iter 70 value 84.503511 iter 80 value 83.749864 iter 90 value 83.042684 iter 100 value 82.131423 final value 82.131423 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.901292 iter 10 value 94.520932 iter 20 value 90.156811 iter 30 value 84.729876 iter 40 value 83.995682 iter 50 value 83.824970 iter 60 value 82.871683 iter 70 value 82.667105 iter 80 value 82.419125 iter 90 value 82.100466 iter 100 value 81.787806 final value 81.787806 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.829774 iter 10 value 92.879184 iter 20 value 89.343323 iter 30 value 86.193263 iter 40 value 83.364843 iter 50 value 82.549783 iter 60 value 82.315126 iter 70 value 81.855116 iter 80 value 81.408198 iter 90 value 81.305767 iter 100 value 81.248795 final value 81.248795 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.164823 iter 10 value 94.466206 iter 20 value 89.342305 iter 30 value 88.098009 iter 40 value 85.964154 iter 50 value 85.293451 iter 60 value 83.804494 iter 70 value 82.864366 iter 80 value 81.892389 iter 90 value 81.557347 iter 100 value 81.074874 final value 81.074874 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 131.271693 iter 10 value 92.891469 iter 20 value 87.256247 iter 30 value 86.825613 iter 40 value 86.318716 iter 50 value 83.831152 iter 60 value 82.693148 iter 70 value 82.421781 iter 80 value 81.914023 iter 90 value 81.471321 iter 100 value 81.314307 final value 81.314307 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.803749 iter 10 value 94.322594 iter 20 value 87.090243 iter 30 value 83.892950 iter 40 value 82.459112 iter 50 value 81.536236 iter 60 value 81.495642 iter 70 value 81.465762 iter 80 value 81.416388 iter 90 value 81.330580 iter 100 value 81.194358 final value 81.194358 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.625158 iter 10 value 100.467568 iter 20 value 94.360806 iter 30 value 85.241320 iter 40 value 82.414373 iter 50 value 82.026329 iter 60 value 81.614305 iter 70 value 81.587485 iter 80 value 81.559758 iter 90 value 81.557698 iter 100 value 81.546014 final value 81.546014 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.326405 final value 94.486021 converged Fitting Repeat 2 # weights: 103 initial value 101.114502 final value 94.486068 converged Fitting Repeat 3 # weights: 103 initial value 100.913233 iter 10 value 94.485871 iter 20 value 94.453223 iter 30 value 85.479753 iter 40 value 85.190011 iter 50 value 85.180187 iter 60 value 84.772908 iter 70 value 84.731012 iter 80 value 84.677313 iter 90 value 84.549495 final value 84.537126 converged Fitting Repeat 4 # weights: 103 initial value 96.934640 final value 94.485695 converged Fitting Repeat 5 # weights: 103 initial value 96.317032 final value 94.485923 converged Fitting Repeat 1 # weights: 305 initial value 94.672688 iter 10 value 94.484191 iter 20 value 86.849645 iter 30 value 85.527778 iter 40 value 85.527622 iter 50 value 85.527251 final value 85.527209 converged Fitting Repeat 2 # weights: 305 initial value 114.412515 iter 10 value 94.488374 iter 20 value 94.484347 final value 94.484215 converged Fitting Repeat 3 # weights: 305 initial value 96.812067 iter 10 value 94.488374 iter 20 value 92.832884 iter 30 value 84.181311 iter 40 value 84.128005 final value 84.127971 converged Fitting Repeat 4 # weights: 305 initial value 98.375509 iter 10 value 94.487704 iter 20 value 94.455153 iter 30 value 94.447421 iter 40 value 94.379985 iter 50 value 90.122491 iter 60 value 89.143025 iter 70 value 89.139160 iter 80 value 86.150830 iter 90 value 85.549239 iter 100 value 85.533025 final value 85.533025 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.851126 iter 10 value 94.448183 iter 20 value 94.447200 iter 30 value 94.443315 iter 40 value 94.072060 iter 50 value 94.051192 iter 60 value 94.004507 iter 70 value 93.998016 final value 93.997985 converged Fitting Repeat 1 # weights: 507 initial value 100.431803 iter 10 value 94.451113 iter 20 value 94.329293 iter 30 value 92.300767 iter 40 value 90.753000 iter 50 value 90.651152 iter 60 value 90.368391 iter 70 value 90.338786 iter 80 value 90.160571 final value 90.145127 converged Fitting Repeat 2 # weights: 507 initial value 131.102325 iter 10 value 94.492225 iter 20 value 94.483418 iter 30 value 94.410397 iter 40 value 87.538429 iter 50 value 85.049671 iter 60 value 84.044912 iter 70 value 83.269010 final value 83.268899 converged Fitting Repeat 3 # weights: 507 initial value 103.394106 iter 10 value 94.174938 iter 20 value 94.173534 final value 94.170147 converged Fitting Repeat 4 # weights: 507 initial value 117.201340 iter 10 value 94.362481 iter 20 value 87.820072 iter 30 value 85.167285 iter 40 value 85.004084 iter 50 value 84.286210 iter 60 value 82.480549 iter 70 value 80.985165 iter 80 value 80.887360 iter 90 value 80.844113 iter 100 value 80.834230 final value 80.834230 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.280719 iter 10 value 94.173598 iter 20 value 93.349621 iter 30 value 89.815583 iter 40 value 89.475202 iter 50 value 89.375938 iter 60 value 89.358477 iter 70 value 88.621172 iter 80 value 87.675349 iter 90 value 84.279605 iter 100 value 84.107952 final value 84.107952 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.011122 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.500490 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 106.101839 final value 93.915746 converged Fitting Repeat 4 # weights: 103 initial value 98.977949 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.968961 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 100.635904 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 96.055853 iter 10 value 92.777479 iter 20 value 92.444432 iter 30 value 92.405017 final value 92.392496 converged Fitting Repeat 3 # weights: 305 initial value 94.706978 iter 10 value 94.037878 iter 20 value 93.991526 iter 20 value 93.991525 iter 20 value 93.991525 final value 93.991525 converged Fitting Repeat 4 # weights: 305 initial value 96.866220 final value 93.991525 converged Fitting Repeat 5 # weights: 305 initial value 106.236468 final value 93.915746 converged Fitting Repeat 1 # weights: 507 initial value 105.675534 iter 10 value 93.940405 final value 93.940397 converged Fitting Repeat 2 # weights: 507 initial value 99.175029 iter 10 value 92.391808 iter 20 value 81.615500 iter 30 value 81.614266 iter 40 value 81.613338 final value 81.613290 converged Fitting Repeat 3 # weights: 507 initial value 98.385367 final value 93.180233 converged Fitting Repeat 4 # weights: 507 initial value 99.471920 iter 10 value 90.272466 iter 20 value 84.955894 iter 30 value 81.613283 iter 30 value 81.613283 iter 30 value 81.613283 final value 81.613283 converged Fitting Repeat 5 # weights: 507 initial value 96.457111 iter 10 value 93.400473 final value 93.250000 converged Fitting Repeat 1 # weights: 103 initial value 99.020622 iter 10 value 93.438246 iter 20 value 86.396177 iter 30 value 84.400420 iter 40 value 82.415292 iter 50 value 80.385597 iter 60 value 80.322533 iter 70 value 80.032422 iter 80 value 79.580053 iter 90 value 79.541568 final value 79.541557 converged Fitting Repeat 2 # weights: 103 initial value 101.472978 iter 10 value 93.017930 iter 20 value 86.329579 iter 30 value 85.022120 iter 40 value 83.663473 iter 50 value 83.362926 iter 60 value 82.960144 iter 70 value 81.004332 iter 80 value 80.189768 iter 90 value 80.058182 final value 80.057782 converged Fitting Repeat 3 # weights: 103 initial value 97.511297 iter 10 value 94.055502 iter 20 value 93.937124 iter 30 value 90.901382 iter 40 value 84.292062 iter 50 value 83.172198 iter 60 value 82.249570 iter 70 value 81.984675 iter 80 value 81.925904 iter 90 value 80.601905 iter 100 value 80.275236 final value 80.275236 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.953981 iter 10 value 94.065792 iter 20 value 94.038729 iter 30 value 93.875963 iter 40 value 91.519891 iter 50 value 91.360771 iter 60 value 84.644903 iter 70 value 82.614154 iter 80 value 82.403499 iter 90 value 81.663154 iter 100 value 81.427359 final value 81.427359 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.573627 iter 10 value 87.623443 iter 20 value 83.881518 iter 30 value 83.027713 iter 40 value 81.900780 iter 50 value 81.448527 iter 60 value 81.429690 final value 81.429544 converged Fitting Repeat 1 # weights: 305 initial value 103.390167 iter 10 value 94.024411 iter 20 value 85.358605 iter 30 value 84.659685 iter 40 value 83.477888 iter 50 value 81.536334 iter 60 value 81.158739 iter 70 value 81.085228 iter 80 value 80.646773 iter 90 value 79.121025 iter 100 value 78.406842 final value 78.406842 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.812534 iter 10 value 93.398943 iter 20 value 85.941747 iter 30 value 84.467705 iter 40 value 83.076034 iter 50 value 80.915427 iter 60 value 79.781029 iter 70 value 79.425190 iter 80 value 78.459280 iter 90 value 78.376310 iter 100 value 78.334537 final value 78.334537 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.213766 iter 10 value 93.534624 iter 20 value 85.436981 iter 30 value 85.002602 iter 40 value 84.075648 iter 50 value 82.624945 iter 60 value 82.109734 iter 70 value 82.019035 iter 80 value 81.965792 iter 90 value 81.389854 iter 100 value 79.961961 final value 79.961961 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 116.705443 iter 10 value 93.697868 iter 20 value 84.432520 iter 30 value 81.686508 iter 40 value 81.189908 iter 50 value 80.523365 iter 60 value 80.071929 iter 70 value 79.370666 iter 80 value 79.332015 iter 90 value 79.304381 iter 100 value 79.262597 final value 79.262597 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.534065 iter 10 value 94.775380 iter 20 value 89.019307 iter 30 value 84.586015 iter 40 value 83.586832 iter 50 value 80.758816 iter 60 value 79.657726 iter 70 value 78.819766 iter 80 value 78.557507 iter 90 value 78.479482 iter 100 value 78.172393 final value 78.172393 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 117.919540 iter 10 value 95.374695 iter 20 value 94.153934 iter 30 value 87.938370 iter 40 value 82.178120 iter 50 value 80.750013 iter 60 value 80.159786 iter 70 value 79.671982 iter 80 value 78.816089 iter 90 value 78.439187 iter 100 value 78.248566 final value 78.248566 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 117.149119 iter 10 value 94.004000 iter 20 value 91.975290 iter 30 value 84.396409 iter 40 value 81.540108 iter 50 value 80.842038 iter 60 value 80.257769 iter 70 value 79.744881 iter 80 value 79.305181 iter 90 value 79.163941 iter 100 value 78.931539 final value 78.931539 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.398920 iter 10 value 87.318687 iter 20 value 84.339904 iter 30 value 83.218025 iter 40 value 80.729640 iter 50 value 79.961260 iter 60 value 79.605896 iter 70 value 78.627649 iter 80 value 78.216538 iter 90 value 78.036890 iter 100 value 77.921402 final value 77.921402 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.053790 iter 10 value 94.122336 iter 20 value 91.588054 iter 30 value 87.454652 iter 40 value 85.547139 iter 50 value 83.448668 iter 60 value 82.074522 iter 70 value 80.176169 iter 80 value 79.252862 iter 90 value 78.847779 iter 100 value 78.446647 final value 78.446647 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.343187 iter 10 value 92.660510 iter 20 value 89.159080 iter 30 value 82.944121 iter 40 value 81.824345 iter 50 value 80.707441 iter 60 value 79.573799 iter 70 value 79.089353 iter 80 value 78.638157 iter 90 value 78.506786 iter 100 value 78.151731 final value 78.151731 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.405871 final value 94.054678 converged Fitting Repeat 2 # weights: 103 initial value 98.688761 final value 94.054622 converged Fitting Repeat 3 # weights: 103 initial value 117.995992 final value 94.054591 converged Fitting Repeat 4 # weights: 103 initial value 104.218574 final value 94.044829 converged Fitting Repeat 5 # weights: 103 initial value 115.511715 final value 94.054750 converged Fitting Repeat 1 # weights: 305 initial value 98.979159 iter 10 value 93.920394 iter 20 value 93.915767 iter 30 value 93.488687 iter 40 value 93.027107 iter 50 value 92.625786 final value 92.625784 converged Fitting Repeat 2 # weights: 305 initial value 106.732951 iter 10 value 93.939796 iter 20 value 93.918164 iter 30 value 93.857365 iter 40 value 93.852143 iter 50 value 91.409923 iter 60 value 90.130879 iter 70 value 89.624854 iter 80 value 89.624293 final value 89.624237 converged Fitting Repeat 3 # weights: 305 initial value 99.037631 iter 10 value 93.920565 iter 20 value 93.845023 iter 20 value 93.845022 iter 20 value 93.845022 final value 93.845022 converged Fitting Repeat 4 # weights: 305 initial value 112.583655 iter 10 value 94.058047 iter 20 value 92.374933 iter 30 value 82.740083 iter 40 value 82.711483 iter 50 value 82.710164 iter 60 value 82.709404 iter 70 value 82.708461 final value 82.708312 converged Fitting Repeat 5 # weights: 305 initial value 120.621750 iter 10 value 94.057753 iter 20 value 94.053358 iter 30 value 93.944015 iter 40 value 88.830040 iter 50 value 83.239361 iter 60 value 80.603498 iter 70 value 80.338425 iter 80 value 79.256201 iter 90 value 78.733585 iter 100 value 78.733260 final value 78.733260 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 97.532749 iter 10 value 93.929658 iter 20 value 93.929198 iter 30 value 93.922112 iter 40 value 89.481588 iter 50 value 82.445748 iter 60 value 78.909638 iter 70 value 78.457910 iter 80 value 78.334195 final value 78.333598 converged Fitting Repeat 2 # weights: 507 initial value 93.146352 iter 10 value 82.671622 iter 20 value 82.621695 iter 30 value 82.525563 final value 82.511729 converged Fitting Repeat 3 # weights: 507 initial value 98.219445 iter 10 value 94.006990 iter 20 value 94.001117 iter 30 value 94.000033 iter 40 value 90.346567 iter 50 value 90.226607 iter 60 value 90.124239 iter 70 value 90.122498 iter 70 value 90.122497 iter 70 value 90.122497 final value 90.122497 converged Fitting Repeat 4 # weights: 507 initial value 110.448783 iter 10 value 93.868215 iter 20 value 93.861032 iter 30 value 93.849201 iter 40 value 93.134084 iter 50 value 85.490272 iter 60 value 84.637142 final value 84.634964 converged Fitting Repeat 5 # weights: 507 initial value 107.071600 iter 10 value 93.923627 iter 20 value 93.825126 iter 30 value 91.996025 iter 40 value 86.258342 iter 50 value 83.188933 iter 60 value 81.995257 iter 70 value 81.963527 iter 80 value 81.963478 iter 90 value 81.963174 final value 81.963077 converged Fitting Repeat 1 # weights: 103 initial value 95.003281 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 104.782625 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.600650 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.070587 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 101.038853 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 112.073153 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 99.449330 final value 94.466823 converged Fitting Repeat 3 # weights: 305 initial value 97.511187 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.703663 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 100.754771 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 112.423006 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 101.535265 iter 10 value 90.386092 iter 20 value 89.140065 iter 30 value 89.138123 final value 89.138111 converged Fitting Repeat 3 # weights: 507 initial value 117.764571 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 114.066592 final value 94.428839 converged Fitting Repeat 5 # weights: 507 initial value 96.529748 iter 10 value 93.942752 final value 93.941399 converged Fitting Repeat 1 # weights: 103 initial value 100.818029 iter 10 value 94.088803 iter 20 value 90.660702 iter 30 value 88.023561 iter 40 value 87.429271 iter 50 value 86.853791 iter 60 value 85.715633 iter 70 value 85.706029 iter 80 value 85.702689 final value 85.702012 converged Fitting Repeat 2 # weights: 103 initial value 108.197344 iter 10 value 94.489045 iter 20 value 93.548765 iter 30 value 87.422885 iter 40 value 86.009885 iter 50 value 85.089758 iter 60 value 84.350975 iter 70 value 84.205888 iter 80 value 83.968845 iter 90 value 83.911800 iter 100 value 83.879082 final value 83.879082 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.321968 iter 10 value 94.569456 iter 20 value 89.541547 iter 30 value 87.386187 iter 40 value 87.030039 iter 50 value 86.182959 iter 60 value 86.000187 iter 70 value 85.773258 iter 80 value 85.734989 iter 90 value 85.709733 iter 100 value 85.704438 final value 85.704438 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.131662 iter 10 value 94.463307 iter 20 value 90.921107 iter 30 value 89.381103 iter 40 value 88.620510 iter 50 value 88.060925 iter 60 value 86.286680 iter 70 value 85.816538 iter 80 value 85.728517 iter 90 value 85.703211 final value 85.702011 converged Fitting Repeat 5 # weights: 103 initial value 103.624786 iter 10 value 94.441731 iter 20 value 88.652459 iter 30 value 87.992199 iter 40 value 87.417084 iter 50 value 87.248946 iter 60 value 86.222276 iter 70 value 85.653217 iter 80 value 85.590640 iter 90 value 85.538350 iter 90 value 85.538350 iter 90 value 85.538350 final value 85.538350 converged Fitting Repeat 1 # weights: 305 initial value 103.142925 iter 10 value 93.764489 iter 20 value 92.511880 iter 30 value 92.447432 iter 40 value 92.395193 iter 50 value 92.359908 iter 60 value 92.087226 iter 70 value 88.423924 iter 80 value 88.034919 iter 90 value 87.894398 iter 100 value 86.953941 final value 86.953941 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.714682 iter 10 value 94.596081 iter 20 value 92.660786 iter 30 value 90.811887 iter 40 value 90.223935 iter 50 value 89.099382 iter 60 value 86.068599 iter 70 value 85.153170 iter 80 value 84.314831 iter 90 value 84.173897 iter 100 value 83.839976 final value 83.839976 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 119.510319 iter 10 value 94.511985 iter 20 value 87.905322 iter 30 value 87.221252 iter 40 value 86.732295 iter 50 value 86.493411 iter 60 value 85.756538 iter 70 value 85.532152 iter 80 value 84.372852 iter 90 value 83.387419 iter 100 value 83.184599 final value 83.184599 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.342222 iter 10 value 94.346667 iter 20 value 87.723581 iter 30 value 87.443384 iter 40 value 86.839450 iter 50 value 84.942351 iter 60 value 84.163510 iter 70 value 83.833803 iter 80 value 83.180858 iter 90 value 82.552886 iter 100 value 82.377868 final value 82.377868 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.831884 iter 10 value 93.477558 iter 20 value 91.281873 iter 30 value 87.752658 iter 40 value 85.599416 iter 50 value 84.297715 iter 60 value 83.537629 iter 70 value 83.381130 iter 80 value 83.355012 iter 90 value 83.242331 iter 100 value 83.213375 final value 83.213375 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.968875 iter 10 value 94.530775 iter 20 value 91.181963 iter 30 value 87.351958 iter 40 value 86.500077 iter 50 value 86.073540 iter 60 value 84.186619 iter 70 value 83.262757 iter 80 value 82.956343 iter 90 value 82.607621 iter 100 value 82.427117 final value 82.427117 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.006941 iter 10 value 94.636750 iter 20 value 94.537572 iter 30 value 90.991863 iter 40 value 89.107372 iter 50 value 88.868603 iter 60 value 86.473422 iter 70 value 85.779996 iter 80 value 84.801324 iter 90 value 84.626268 iter 100 value 84.482637 final value 84.482637 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.520942 iter 10 value 94.395474 iter 20 value 87.901971 iter 30 value 87.216928 iter 40 value 86.268821 iter 50 value 83.947813 iter 60 value 83.186628 iter 70 value 82.985302 iter 80 value 82.909432 iter 90 value 82.625795 iter 100 value 82.602276 final value 82.602276 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 135.328433 iter 10 value 97.591473 iter 20 value 88.786339 iter 30 value 86.973898 iter 40 value 86.513507 iter 50 value 84.246749 iter 60 value 83.165139 iter 70 value 83.051226 iter 80 value 82.979231 iter 90 value 82.811541 iter 100 value 82.530455 final value 82.530455 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.416047 iter 10 value 94.530676 iter 20 value 89.507077 iter 30 value 87.938539 iter 40 value 87.711445 iter 50 value 87.390706 iter 60 value 87.300622 iter 70 value 87.036074 iter 80 value 84.852099 iter 90 value 83.825606 iter 100 value 82.893743 final value 82.893743 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.694203 final value 94.485807 converged Fitting Repeat 2 # weights: 103 initial value 100.967720 iter 10 value 94.486052 iter 20 value 94.484084 iter 30 value 94.463297 iter 40 value 86.643253 iter 50 value 86.297689 iter 60 value 86.267992 iter 70 value 86.257776 iter 80 value 86.154411 iter 90 value 86.144504 final value 86.144497 converged Fitting Repeat 3 # weights: 103 initial value 103.589161 final value 94.485841 converged Fitting Repeat 4 # weights: 103 initial value 99.367545 iter 10 value 94.431269 iter 20 value 94.430439 iter 30 value 89.151954 iter 40 value 89.143561 iter 50 value 88.747790 iter 60 value 88.742826 final value 88.742785 converged Fitting Repeat 5 # weights: 103 initial value 97.392388 final value 94.486218 converged Fitting Repeat 1 # weights: 305 initial value 120.716118 iter 10 value 94.488753 iter 20 value 94.484433 iter 30 value 89.429374 iter 40 value 89.423979 iter 50 value 89.422728 iter 60 value 88.501665 iter 70 value 88.499478 iter 80 value 87.608795 final value 87.547373 converged Fitting Repeat 2 # weights: 305 initial value 108.793044 iter 10 value 94.488960 iter 20 value 94.405953 iter 30 value 93.816063 iter 40 value 93.791483 final value 93.791457 converged Fitting Repeat 3 # weights: 305 initial value 96.092264 iter 10 value 93.912621 iter 20 value 93.644634 iter 30 value 93.639253 iter 40 value 93.512683 iter 50 value 88.949651 iter 60 value 88.934930 final value 88.934826 converged Fitting Repeat 4 # weights: 305 initial value 127.868284 iter 10 value 94.471909 iter 20 value 94.468242 iter 30 value 92.706631 iter 40 value 91.138942 iter 50 value 85.671782 iter 60 value 83.687399 iter 70 value 82.755467 iter 80 value 82.485071 iter 90 value 82.475134 iter 100 value 82.474839 final value 82.474839 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 96.617762 iter 10 value 94.471532 iter 20 value 93.146709 iter 30 value 92.931106 final value 92.931063 converged Fitting Repeat 1 # weights: 507 initial value 99.957194 iter 10 value 94.436932 iter 20 value 94.430900 iter 30 value 94.424327 final value 94.424317 converged Fitting Repeat 2 # weights: 507 initial value 111.067911 iter 10 value 94.492398 iter 20 value 94.484247 iter 30 value 94.164391 iter 40 value 93.484801 iter 50 value 93.280758 iter 60 value 92.970487 final value 92.970474 converged Fitting Repeat 3 # weights: 507 initial value 106.656079 iter 10 value 94.493026 iter 20 value 94.463241 iter 30 value 90.643165 iter 40 value 89.146340 iter 50 value 89.133395 iter 60 value 84.945454 iter 70 value 82.666659 iter 80 value 82.655573 iter 90 value 82.654723 iter 100 value 82.652529 final value 82.652529 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 100.089073 iter 10 value 94.492853 iter 20 value 87.458258 iter 30 value 87.343526 final value 87.343204 converged Fitting Repeat 5 # weights: 507 initial value 122.578132 iter 10 value 94.481531 iter 20 value 94.472328 iter 30 value 91.539910 iter 40 value 86.831844 iter 50 value 86.369385 final value 86.369376 converged Fitting Repeat 1 # weights: 507 initial value 137.708221 iter 10 value 117.975766 iter 20 value 117.761207 iter 30 value 117.568501 iter 40 value 116.647805 iter 50 value 105.562235 iter 60 value 102.455364 iter 70 value 101.299829 iter 80 value 100.589663 iter 90 value 100.541144 iter 100 value 100.379232 final value 100.379232 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 132.819875 iter 10 value 117.785940 iter 20 value 115.973810 iter 30 value 107.337281 iter 40 value 105.843343 iter 50 value 104.946186 iter 60 value 104.299244 iter 70 value 104.017035 iter 80 value 102.850819 iter 90 value 102.117785 iter 100 value 101.420224 final value 101.420224 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 133.622999 iter 10 value 116.006139 iter 20 value 107.255170 iter 30 value 104.003458 iter 40 value 102.500560 iter 50 value 102.116029 iter 60 value 101.913348 iter 70 value 101.796772 iter 80 value 101.409719 iter 90 value 101.039790 iter 100 value 100.950558 final value 100.950558 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 148.854052 iter 10 value 118.748692 iter 20 value 114.060801 iter 30 value 107.676113 iter 40 value 107.293197 iter 50 value 104.422551 iter 60 value 102.418808 iter 70 value 101.575824 iter 80 value 101.080330 iter 90 value 100.977051 iter 100 value 100.525157 final value 100.525157 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 131.041544 iter 10 value 117.197829 iter 20 value 115.409986 iter 30 value 114.721478 iter 40 value 106.551326 iter 50 value 105.317940 iter 60 value 103.546370 iter 70 value 103.240271 iter 80 value 102.826858 iter 90 value 102.547445 iter 100 value 102.251425 final value 102.251425 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Jan 30 23:09:24 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 39.052 1.156 55.022
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.823 | 0.491 | 34.315 | |
FreqInteractors | 0.202 | 0.011 | 0.214 | |
calculateAAC | 0.032 | 0.004 | 0.038 | |
calculateAutocor | 0.305 | 0.021 | 0.327 | |
calculateCTDC | 0.069 | 0.000 | 0.070 | |
calculateCTDD | 0.484 | 0.007 | 0.491 | |
calculateCTDT | 0.185 | 0.001 | 0.186 | |
calculateCTriad | 0.408 | 0.015 | 0.424 | |
calculateDC | 0.079 | 0.002 | 0.081 | |
calculateF | 0.284 | 0.009 | 0.293 | |
calculateKSAAP | 0.088 | 0.001 | 0.089 | |
calculateQD_Sm | 1.930 | 0.017 | 1.949 | |
calculateTC | 1.414 | 0.026 | 1.441 | |
calculateTC_Sm | 0.248 | 0.001 | 0.249 | |
corr_plot | 33.270 | 0.183 | 33.526 | |
enrichfindP | 0.515 | 0.028 | 8.155 | |
enrichfind_hp | 0.073 | 0.003 | 1.003 | |
enrichplot | 0.359 | 0.003 | 0.363 | |
filter_missing_values | 0.001 | 0.000 | 0.002 | |
getFASTA | 0.474 | 0.007 | 3.841 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.003 | 0.000 | 0.003 | |
get_positivePPI | 0.000 | 0.001 | 0.000 | |
impute_missing_data | 0.002 | 0.001 | 0.003 | |
plotPPI | 0.068 | 0.001 | 0.070 | |
pred_ensembel | 12.613 | 0.274 | 11.623 | |
var_imp | 33.305 | 0.415 | 33.787 | |