Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-02-03 12:05 -0500 (Mon, 03 Feb 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4746
palomino8Windows Server 2022 Datacenterx644.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" 4494
merida1macOS 12.7.5 Montereyx86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4517
kjohnson1macOS 13.6.6 Venturaarm644.4.2 (2024-10-31) -- "Pile of Leaves" 4469
taishanLinux (openEuler 24.03 LTS)aarch644.4.2 (2024-10-31) -- "Pile of Leaves" 4400
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 979/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.12.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-01-30 13:00 -0500 (Thu, 30 Jan 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_20
git_last_commit: ce9e305
git_last_commit_date: 2024-10-29 11:04:11 -0500 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for HPiP on nebbiolo2

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.12.0
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz
StartedAt: 2025-01-30 23:05:02 -0500 (Thu, 30 Jan 2025)
EndedAt: 2025-01-30 23:19:03 -0500 (Thu, 30 Jan 2025)
EllapsedTime: 840.9 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’
* using R version 4.4.2 (2024-10-31)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0
    GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0
* running under: Ubuntu 24.04.1 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
FSmethod      33.823  0.491  34.315
var_imp       33.305  0.415  33.787
corr_plot     33.270  0.183  33.526
pred_ensembel 12.613  0.274  11.623
enrichfindP    0.515  0.028   8.155
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’
* installing *source* package ‘HPiP’ ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.4.2 (2024-10-31) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 97.188486 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.773882 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.529227 
iter  10 value 92.391421
iter  20 value 90.736615
iter  30 value 79.798872
iter  40 value 79.757643
final  value 79.754110 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.604768 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.962941 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 109.194037 
iter  10 value 87.765927
final  value 87.709921 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.962039 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.086076 
final  value 93.869756 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.577317 
iter  10 value 93.122669
iter  20 value 93.082837
iter  30 value 93.082085
iter  40 value 92.736071
final  value 92.736025 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.621795 
iter  10 value 83.252360
iter  20 value 82.514680
iter  30 value 82.260761
iter  40 value 82.187148
iter  50 value 82.092664
iter  60 value 82.087436
iter  70 value 82.083537
iter  80 value 82.077052
iter  80 value 82.077052
iter  80 value 82.077052
final  value 82.077052 
converged
Fitting Repeat 1 

# weights:  507
initial  value 104.087099 
iter  10 value 91.830073
final  value 91.824176 
converged
Fitting Repeat 2 

# weights:  507
initial  value 119.375930 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.252079 
iter  10 value 91.664725
iter  20 value 87.406988
iter  30 value 86.952679
iter  40 value 86.947638
iter  50 value 86.946529
final  value 86.946473 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.607477 
iter  10 value 87.628103
iter  20 value 84.952664
final  value 84.935829 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.667496 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.446744 
iter  10 value 94.059917
iter  20 value 93.944802
iter  30 value 86.604565
iter  40 value 83.708718
iter  50 value 82.085304
iter  60 value 81.719086
iter  70 value 81.671101
iter  80 value 81.662575
final  value 81.662496 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.658811 
iter  10 value 93.956904
iter  20 value 84.205165
iter  30 value 82.537863
iter  40 value 81.951050
iter  50 value 81.884499
iter  60 value 81.727148
iter  70 value 81.709784
iter  80 value 81.703663
iter  90 value 81.699723
iter 100 value 81.694418
final  value 81.694418 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 106.128716 
iter  10 value 94.030780
iter  20 value 86.079128
iter  30 value 84.238823
iter  40 value 81.175106
iter  50 value 81.162283
iter  60 value 81.151636
iter  70 value 81.128250
final  value 81.127584 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.341631 
iter  10 value 94.056572
iter  20 value 91.760689
iter  30 value 90.093895
iter  40 value 84.177228
iter  50 value 83.848398
iter  60 value 81.782484
iter  70 value 81.667544
iter  80 value 81.662498
final  value 81.662496 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.132766 
iter  10 value 94.044586
iter  20 value 92.699209
iter  30 value 88.317096
iter  40 value 86.411019
iter  50 value 86.312740
iter  60 value 86.307326
iter  70 value 81.938839
iter  80 value 81.664091
iter  90 value 81.662504
final  value 81.662496 
converged
Fitting Repeat 1 

# weights:  305
initial  value 112.594792 
iter  10 value 89.998410
iter  20 value 88.961618
iter  30 value 84.582981
iter  40 value 81.859842
iter  50 value 81.629733
iter  60 value 81.452521
iter  70 value 80.892235
iter  80 value 80.439155
iter  90 value 80.356664
iter 100 value 80.256715
final  value 80.256715 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 104.500325 
iter  10 value 93.884242
iter  20 value 84.917563
iter  30 value 82.006062
iter  40 value 81.636055
iter  50 value 81.354104
iter  60 value 80.832581
iter  70 value 79.612742
iter  80 value 79.436048
iter  90 value 79.284464
iter 100 value 78.921674
final  value 78.921674 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 106.646705 
iter  10 value 92.722146
iter  20 value 82.160461
iter  30 value 81.363917
iter  40 value 79.423528
iter  50 value 79.279953
iter  60 value 79.245001
iter  70 value 79.072161
iter  80 value 78.455651
iter  90 value 78.372160
iter 100 value 78.262561
final  value 78.262561 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 115.169454 
iter  10 value 96.881148
iter  20 value 87.101413
iter  30 value 84.371427
iter  40 value 84.214606
iter  50 value 81.768977
iter  60 value 80.287511
iter  70 value 80.075898
iter  80 value 79.578568
iter  90 value 79.218893
iter 100 value 78.973840
final  value 78.973840 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 100.616917 
iter  10 value 94.015775
iter  20 value 89.156536
iter  30 value 81.845765
iter  40 value 81.303079
iter  50 value 80.957503
iter  60 value 80.727065
iter  70 value 80.411325
iter  80 value 80.355151
iter  90 value 80.266584
iter 100 value 80.262753
final  value 80.262753 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 106.027315 
iter  10 value 94.071075
iter  20 value 93.921290
iter  30 value 91.864119
iter  40 value 84.377362
iter  50 value 82.564153
iter  60 value 80.603902
iter  70 value 79.752450
iter  80 value 79.285169
iter  90 value 79.203364
iter 100 value 79.103432
final  value 79.103432 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 112.049798 
iter  10 value 94.306348
iter  20 value 92.957870
iter  30 value 88.665262
iter  40 value 84.823526
iter  50 value 83.270301
iter  60 value 82.845175
iter  70 value 80.699209
iter  80 value 79.825652
iter  90 value 79.405921
iter 100 value 78.854773
final  value 78.854773 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 112.343862 
iter  10 value 94.214625
iter  20 value 89.920043
iter  30 value 83.441264
iter  40 value 80.944331
iter  50 value 80.702176
iter  60 value 80.068552
iter  70 value 79.980384
iter  80 value 79.595265
iter  90 value 79.080316
iter 100 value 78.423733
final  value 78.423733 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.649549 
iter  10 value 94.868599
iter  20 value 89.337418
iter  30 value 84.052966
iter  40 value 82.434469
iter  50 value 81.294247
iter  60 value 81.078731
iter  70 value 80.821685
iter  80 value 80.772222
iter  90 value 80.719339
iter 100 value 80.154791
final  value 80.154791 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 108.114993 
iter  10 value 88.574776
iter  20 value 85.327381
iter  30 value 83.357507
iter  40 value 80.671012
iter  50 value 79.946964
iter  60 value 79.860413
iter  70 value 79.531621
iter  80 value 79.253840
iter  90 value 78.552290
iter 100 value 78.431785
final  value 78.431785 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.734688 
final  value 94.054621 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.814972 
final  value 94.034508 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.177492 
final  value 94.054405 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.586441 
iter  10 value 94.054996
iter  20 value 94.027756
iter  30 value 93.537933
iter  40 value 93.537650
final  value 93.537648 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.302151 
final  value 94.054156 
converged
Fitting Repeat 1 

# weights:  305
initial  value 113.528420 
iter  10 value 94.058202
iter  20 value 94.052995
iter  30 value 85.908016
iter  40 value 84.942695
iter  40 value 84.942695
iter  40 value 84.942695
final  value 84.942695 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.207832 
iter  10 value 94.057459
iter  20 value 94.029832
iter  30 value 91.560436
iter  40 value 85.973808
iter  50 value 84.866495
iter  60 value 84.841387
iter  70 value 84.836926
final  value 84.836763 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.166911 
iter  10 value 91.834352
iter  20 value 91.830348
iter  30 value 91.685290
iter  40 value 91.638496
iter  50 value 91.630134
iter  60 value 91.625612
iter  70 value 91.625577
final  value 91.625475 
converged
Fitting Repeat 4 

# weights:  305
initial  value 116.419613 
iter  10 value 94.058148
iter  20 value 94.053085
iter  30 value 92.518446
iter  40 value 85.760654
iter  50 value 82.982617
iter  60 value 79.639264
iter  70 value 79.058991
iter  80 value 78.988133
iter  90 value 78.985737
iter 100 value 78.939375
final  value 78.939375 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 97.776498 
iter  10 value 94.038034
iter  20 value 93.630466
iter  30 value 84.969142
iter  40 value 83.674982
iter  50 value 82.738312
iter  60 value 80.816225
iter  70 value 79.851377
iter  80 value 79.843753
iter  90 value 79.843071
iter 100 value 79.838837
final  value 79.838837 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 98.565962 
iter  10 value 93.820899
iter  20 value 93.816667
iter  30 value 93.774627
iter  40 value 87.478317
iter  50 value 84.803533
iter  60 value 83.112783
iter  70 value 80.855853
iter  80 value 80.117761
iter  90 value 78.623585
iter 100 value 78.328704
final  value 78.328704 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 107.415846 
iter  10 value 94.050031
iter  20 value 94.040541
iter  30 value 93.975312
iter  40 value 93.646071
iter  50 value 93.196788
iter  60 value 89.908914
iter  70 value 89.576295
iter  80 value 89.574619
iter  90 value 88.273100
iter 100 value 84.350354
final  value 84.350354 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 108.960257 
iter  10 value 94.060899
iter  20 value 94.051891
iter  30 value 93.603502
iter  40 value 93.601640
iter  40 value 93.601640
iter  40 value 93.601639
final  value 93.601639 
converged
Fitting Repeat 4 

# weights:  507
initial  value 114.102736 
iter  10 value 94.041771
iter  20 value 88.791060
iter  30 value 82.861781
iter  40 value 82.829925
iter  50 value 82.823663
iter  60 value 82.818519
final  value 82.814854 
converged
Fitting Repeat 5 

# weights:  507
initial  value 109.903601 
iter  10 value 94.040856
iter  20 value 93.233932
iter  30 value 82.807506
iter  40 value 82.707672
iter  50 value 82.556566
iter  60 value 82.530143
iter  70 value 82.529023
iter  80 value 82.491661
iter  90 value 81.567259
iter 100 value 78.880333
final  value 78.880333 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.855726 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.628940 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.974829 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.075743 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.703499 
iter  10 value 94.325948
final  value 94.325945 
converged
Fitting Repeat 1 

# weights:  305
initial  value 107.258382 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.900923 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.357876 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.424817 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.891906 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.377236 
iter  10 value 93.744879
iter  20 value 93.642934
iter  20 value 93.642934
iter  20 value 93.642934
final  value 93.642934 
converged
Fitting Repeat 2 

# weights:  507
initial  value 97.775525 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 104.707135 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 109.750682 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 114.276537 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.656404 
iter  10 value 94.486452
iter  20 value 91.086091
iter  30 value 88.946464
iter  40 value 86.212163
iter  50 value 85.758397
iter  60 value 85.422529
iter  70 value 85.414173
final  value 85.414145 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.497813 
iter  10 value 94.538830
iter  20 value 94.486729
iter  30 value 94.131871
iter  40 value 92.958251
iter  50 value 84.319002
iter  60 value 83.478612
iter  70 value 83.071376
iter  80 value 82.880289
iter  90 value 82.278596
iter 100 value 81.372833
final  value 81.372833 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.619524 
iter  10 value 93.290760
iter  20 value 92.802252
iter  30 value 90.165148
iter  40 value 89.155202
iter  50 value 87.648852
iter  60 value 84.380912
iter  70 value 83.719051
iter  80 value 82.242449
iter  90 value 81.508073
iter 100 value 81.435537
final  value 81.435537 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 97.757802 
iter  10 value 94.444789
iter  20 value 93.883043
iter  30 value 93.643669
iter  40 value 93.335424
iter  50 value 93.304598
iter  60 value 87.762009
iter  70 value 83.609251
iter  80 value 82.729513
iter  90 value 82.548495
iter 100 value 82.246950
final  value 82.246950 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 101.442811 
iter  10 value 94.162927
iter  20 value 87.947560
iter  30 value 85.608305
iter  40 value 85.208747
iter  50 value 84.505128
iter  60 value 83.367181
iter  70 value 83.259873
iter  80 value 83.141292
iter  90 value 82.851880
iter 100 value 82.760813
final  value 82.760813 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.024736 
iter  10 value 95.160964
iter  20 value 94.539350
iter  30 value 93.719282
iter  40 value 93.472638
iter  50 value 88.014485
iter  60 value 86.796409
iter  70 value 85.836021
iter  80 value 85.625839
iter  90 value 84.573378
iter 100 value 83.197987
final  value 83.197987 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.233240 
iter  10 value 94.823739
iter  20 value 91.741108
iter  30 value 88.266151
iter  40 value 85.332089
iter  50 value 83.412747
iter  60 value 82.675895
iter  70 value 82.638042
iter  80 value 82.614126
iter  90 value 82.603312
iter 100 value 82.600726
final  value 82.600726 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 121.783932 
iter  10 value 94.776014
iter  20 value 94.333502
iter  30 value 92.988061
iter  40 value 92.052571
iter  50 value 89.755399
iter  60 value 88.771305
iter  70 value 87.312648
iter  80 value 83.332589
iter  90 value 80.760060
iter 100 value 80.139806
final  value 80.139806 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.406491 
iter  10 value 94.665006
iter  20 value 89.797527
iter  30 value 84.272538
iter  40 value 82.814052
iter  50 value 81.563961
iter  60 value 81.225734
iter  70 value 81.046355
iter  80 value 80.937778
iter  90 value 80.744292
iter 100 value 80.597454
final  value 80.597454 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.151147 
iter  10 value 93.841512
iter  20 value 87.140356
iter  30 value 86.394977
iter  40 value 85.653709
iter  50 value 84.236013
iter  60 value 81.240312
iter  70 value 80.747330
iter  80 value 80.469526
iter  90 value 80.030392
iter 100 value 79.949500
final  value 79.949500 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 108.698820 
iter  10 value 93.513675
iter  20 value 87.021397
iter  30 value 85.314015
iter  40 value 83.618295
iter  50 value 80.842763
iter  60 value 80.635486
iter  70 value 80.329007
iter  80 value 80.099809
iter  90 value 79.933026
iter 100 value 79.839612
final  value 79.839612 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.308199 
iter  10 value 96.031894
iter  20 value 87.767120
iter  30 value 84.841448
iter  40 value 84.324147
iter  50 value 83.649094
iter  60 value 81.349233
iter  70 value 80.757459
iter  80 value 80.613624
iter  90 value 80.501720
iter 100 value 80.325680
final  value 80.325680 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 120.569751 
iter  10 value 94.253182
iter  20 value 91.619103
iter  30 value 91.510602
iter  40 value 90.959852
iter  50 value 88.385965
iter  60 value 83.979573
iter  70 value 83.199641
iter  80 value 82.754060
iter  90 value 81.863133
iter 100 value 81.615741
final  value 81.615741 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.298955 
iter  10 value 94.541390
iter  20 value 93.958243
iter  30 value 90.797893
iter  40 value 85.653853
iter  50 value 83.198374
iter  60 value 81.806534
iter  70 value 80.695012
iter  80 value 80.477601
iter  90 value 80.384503
iter 100 value 80.242245
final  value 80.242245 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 109.757925 
iter  10 value 95.415689
iter  20 value 92.826000
iter  30 value 85.550476
iter  40 value 84.780883
iter  50 value 83.303465
iter  60 value 82.520270
iter  70 value 82.091931
iter  80 value 81.957117
iter  90 value 81.747554
iter 100 value 81.188426
final  value 81.188426 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 108.172576 
final  value 94.486012 
converged
Fitting Repeat 2 

# weights:  103
initial  value 107.027091 
final  value 94.485913 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.478560 
final  value 94.486038 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.308969 
final  value 94.485817 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.709662 
iter  10 value 86.148056
iter  20 value 85.375860
iter  30 value 85.375464
iter  40 value 85.373077
iter  50 value 85.173060
final  value 85.172557 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.438797 
iter  10 value 94.489637
iter  20 value 94.428298
iter  30 value 91.252093
iter  40 value 84.192677
iter  50 value 81.670102
iter  60 value 81.312312
final  value 81.250252 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.858439 
iter  10 value 93.778374
iter  20 value 93.777882
iter  30 value 93.406930
iter  40 value 86.928040
iter  50 value 86.619987
iter  60 value 85.521906
final  value 85.485551 
converged
Fitting Repeat 3 

# weights:  305
initial  value 113.057246 
iter  10 value 93.778448
iter  20 value 93.777394
iter  30 value 90.180698
iter  40 value 83.122722
iter  50 value 82.533546
iter  60 value 81.937403
iter  70 value 81.934335
final  value 81.934313 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.371013 
iter  10 value 93.877525
iter  20 value 93.875476
iter  30 value 93.871572
iter  40 value 93.718234
iter  50 value 92.706575
final  value 92.706556 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.136615 
iter  10 value 94.489288
iter  20 value 94.377781
iter  30 value 86.448348
iter  40 value 86.386374
iter  50 value 86.319707
iter  60 value 86.319338
final  value 86.317254 
converged
Fitting Repeat 1 

# weights:  507
initial  value 110.591460 
iter  10 value 93.781775
iter  20 value 93.780447
iter  30 value 93.772920
iter  40 value 91.570957
iter  50 value 91.557720
final  value 91.557636 
converged
Fitting Repeat 2 

# weights:  507
initial  value 108.437169 
iter  10 value 93.781822
iter  20 value 93.777009
iter  30 value 89.009053
iter  40 value 85.375714
iter  50 value 85.322670
iter  60 value 85.313632
iter  70 value 85.289571
iter  80 value 85.096018
iter  90 value 85.043163
iter 100 value 85.020327
final  value 85.020327 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 95.241625 
iter  10 value 93.030971
iter  20 value 93.029210
iter  30 value 92.950628
iter  40 value 92.837151
iter  50 value 92.833968
iter  60 value 92.831330
final  value 92.830713 
converged
Fitting Repeat 4 

# weights:  507
initial  value 104.823780 
iter  10 value 93.954523
iter  20 value 93.903913
iter  30 value 93.898339
iter  40 value 85.676077
iter  50 value 85.215406
iter  60 value 84.561478
final  value 84.543819 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.549418 
iter  10 value 93.651976
iter  20 value 93.650509
iter  30 value 92.975790
iter  40 value 83.901204
iter  50 value 81.999579
iter  60 value 81.846192
iter  70 value 81.756766
iter  80 value 81.723295
iter  90 value 81.704198
iter 100 value 81.668290
final  value 81.668290 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.348007 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.499744 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.569221 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.883752 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.868917 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.488810 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.344820 
iter  10 value 94.251208
final  value 94.057229 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.525437 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.182151 
iter  10 value 94.362108
iter  20 value 92.767841
iter  30 value 88.264965
iter  40 value 87.535170
iter  50 value 87.528412
iter  60 value 87.254651
iter  70 value 86.796971
iter  80 value 86.759377
final  value 86.759329 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.492703 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.591456 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.078853 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.634207 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 113.218175 
iter  10 value 94.065749
iter  20 value 93.907233
final  value 93.907229 
converged
Fitting Repeat 5 

# weights:  507
initial  value 121.738477 
iter  10 value 94.443449
final  value 94.443243 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.575079 
iter  10 value 94.210394
iter  20 value 92.606848
iter  30 value 92.422980
iter  40 value 92.394314
iter  50 value 90.829394
iter  60 value 90.648116
iter  70 value 90.644876
iter  80 value 90.644614
final  value 90.644612 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.406565 
iter  10 value 94.489225
iter  20 value 93.024720
iter  30 value 87.625338
iter  40 value 85.302836
iter  50 value 84.686807
iter  60 value 84.532929
iter  70 value 84.359186
iter  80 value 83.850245
iter  90 value 83.425835
iter 100 value 83.197165
final  value 83.197165 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 99.507424 
iter  10 value 92.056532
iter  20 value 89.953002
iter  30 value 86.136059
iter  40 value 85.953932
iter  50 value 84.964409
iter  60 value 84.957026
final  value 84.956271 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.565739 
iter  10 value 94.471656
iter  20 value 93.574060
iter  30 value 92.464010
iter  40 value 89.480716
iter  50 value 87.676681
iter  60 value 87.101728
iter  70 value 86.377231
iter  80 value 85.341957
iter  90 value 85.328552
iter 100 value 85.326914
final  value 85.326914 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 98.491571 
iter  10 value 94.445162
iter  20 value 91.358030
iter  30 value 89.263496
iter  40 value 85.369376
iter  50 value 83.297299
iter  60 value 82.767373
iter  70 value 82.463265
iter  80 value 82.339795
final  value 82.323772 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.843165 
iter  10 value 94.309795
iter  20 value 85.653323
iter  30 value 85.107545
iter  40 value 84.942505
iter  50 value 84.660875
iter  60 value 83.494322
iter  70 value 83.284792
iter  80 value 82.367452
iter  90 value 81.734044
iter 100 value 81.485492
final  value 81.485492 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 115.801187 
iter  10 value 94.710939
iter  20 value 94.490979
iter  30 value 93.155922
iter  40 value 89.001918
iter  50 value 86.709708
iter  60 value 86.547015
iter  70 value 86.072085
iter  80 value 85.740873
iter  90 value 85.263514
iter 100 value 83.962723
final  value 83.962723 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 109.514605 
iter  10 value 94.121233
iter  20 value 89.249054
iter  30 value 87.816837
iter  40 value 86.943731
iter  50 value 85.586092
iter  60 value 85.470026
iter  70 value 83.847925
iter  80 value 83.168006
iter  90 value 82.884687
iter 100 value 82.818322
final  value 82.818322 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 106.911824 
iter  10 value 94.404109
iter  20 value 91.925466
iter  30 value 90.679414
iter  40 value 88.136050
iter  50 value 86.177235
iter  60 value 84.857385
iter  70 value 84.503511
iter  80 value 83.749864
iter  90 value 83.042684
iter 100 value 82.131423
final  value 82.131423 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.901292 
iter  10 value 94.520932
iter  20 value 90.156811
iter  30 value 84.729876
iter  40 value 83.995682
iter  50 value 83.824970
iter  60 value 82.871683
iter  70 value 82.667105
iter  80 value 82.419125
iter  90 value 82.100466
iter 100 value 81.787806
final  value 81.787806 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 103.829774 
iter  10 value 92.879184
iter  20 value 89.343323
iter  30 value 86.193263
iter  40 value 83.364843
iter  50 value 82.549783
iter  60 value 82.315126
iter  70 value 81.855116
iter  80 value 81.408198
iter  90 value 81.305767
iter 100 value 81.248795
final  value 81.248795 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 108.164823 
iter  10 value 94.466206
iter  20 value 89.342305
iter  30 value 88.098009
iter  40 value 85.964154
iter  50 value 85.293451
iter  60 value 83.804494
iter  70 value 82.864366
iter  80 value 81.892389
iter  90 value 81.557347
iter 100 value 81.074874
final  value 81.074874 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 131.271693 
iter  10 value 92.891469
iter  20 value 87.256247
iter  30 value 86.825613
iter  40 value 86.318716
iter  50 value 83.831152
iter  60 value 82.693148
iter  70 value 82.421781
iter  80 value 81.914023
iter  90 value 81.471321
iter 100 value 81.314307
final  value 81.314307 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.803749 
iter  10 value 94.322594
iter  20 value 87.090243
iter  30 value 83.892950
iter  40 value 82.459112
iter  50 value 81.536236
iter  60 value 81.495642
iter  70 value 81.465762
iter  80 value 81.416388
iter  90 value 81.330580
iter 100 value 81.194358
final  value 81.194358 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.625158 
iter  10 value 100.467568
iter  20 value 94.360806
iter  30 value 85.241320
iter  40 value 82.414373
iter  50 value 82.026329
iter  60 value 81.614305
iter  70 value 81.587485
iter  80 value 81.559758
iter  90 value 81.557698
iter 100 value 81.546014
final  value 81.546014 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.326405 
final  value 94.486021 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.114502 
final  value 94.486068 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.913233 
iter  10 value 94.485871
iter  20 value 94.453223
iter  30 value 85.479753
iter  40 value 85.190011
iter  50 value 85.180187
iter  60 value 84.772908
iter  70 value 84.731012
iter  80 value 84.677313
iter  90 value 84.549495
final  value 84.537126 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.934640 
final  value 94.485695 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.317032 
final  value 94.485923 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.672688 
iter  10 value 94.484191
iter  20 value 86.849645
iter  30 value 85.527778
iter  40 value 85.527622
iter  50 value 85.527251
final  value 85.527209 
converged
Fitting Repeat 2 

# weights:  305
initial  value 114.412515 
iter  10 value 94.488374
iter  20 value 94.484347
final  value 94.484215 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.812067 
iter  10 value 94.488374
iter  20 value 92.832884
iter  30 value 84.181311
iter  40 value 84.128005
final  value 84.127971 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.375509 
iter  10 value 94.487704
iter  20 value 94.455153
iter  30 value 94.447421
iter  40 value 94.379985
iter  50 value 90.122491
iter  60 value 89.143025
iter  70 value 89.139160
iter  80 value 86.150830
iter  90 value 85.549239
iter 100 value 85.533025
final  value 85.533025 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 104.851126 
iter  10 value 94.448183
iter  20 value 94.447200
iter  30 value 94.443315
iter  40 value 94.072060
iter  50 value 94.051192
iter  60 value 94.004507
iter  70 value 93.998016
final  value 93.997985 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.431803 
iter  10 value 94.451113
iter  20 value 94.329293
iter  30 value 92.300767
iter  40 value 90.753000
iter  50 value 90.651152
iter  60 value 90.368391
iter  70 value 90.338786
iter  80 value 90.160571
final  value 90.145127 
converged
Fitting Repeat 2 

# weights:  507
initial  value 131.102325 
iter  10 value 94.492225
iter  20 value 94.483418
iter  30 value 94.410397
iter  40 value 87.538429
iter  50 value 85.049671
iter  60 value 84.044912
iter  70 value 83.269010
final  value 83.268899 
converged
Fitting Repeat 3 

# weights:  507
initial  value 103.394106 
iter  10 value 94.174938
iter  20 value 94.173534
final  value 94.170147 
converged
Fitting Repeat 4 

# weights:  507
initial  value 117.201340 
iter  10 value 94.362481
iter  20 value 87.820072
iter  30 value 85.167285
iter  40 value 85.004084
iter  50 value 84.286210
iter  60 value 82.480549
iter  70 value 80.985165
iter  80 value 80.887360
iter  90 value 80.844113
iter 100 value 80.834230
final  value 80.834230 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 112.280719 
iter  10 value 94.173598
iter  20 value 93.349621
iter  30 value 89.815583
iter  40 value 89.475202
iter  50 value 89.375938
iter  60 value 89.358477
iter  70 value 88.621172
iter  80 value 87.675349
iter  90 value 84.279605
iter 100 value 84.107952
final  value 84.107952 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 99.011122 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.500490 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.101839 
final  value 93.915746 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.977949 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.968961 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.635904 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.055853 
iter  10 value 92.777479
iter  20 value 92.444432
iter  30 value 92.405017
final  value 92.392496 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.706978 
iter  10 value 94.037878
iter  20 value 93.991526
iter  20 value 93.991525
iter  20 value 93.991525
final  value 93.991525 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.866220 
final  value 93.991525 
converged
Fitting Repeat 5 

# weights:  305
initial  value 106.236468 
final  value 93.915746 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.675534 
iter  10 value 93.940405
final  value 93.940397 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.175029 
iter  10 value 92.391808
iter  20 value 81.615500
iter  30 value 81.614266
iter  40 value 81.613338
final  value 81.613290 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.385367 
final  value 93.180233 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.471920 
iter  10 value 90.272466
iter  20 value 84.955894
iter  30 value 81.613283
iter  30 value 81.613283
iter  30 value 81.613283
final  value 81.613283 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.457111 
iter  10 value 93.400473
final  value 93.250000 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.020622 
iter  10 value 93.438246
iter  20 value 86.396177
iter  30 value 84.400420
iter  40 value 82.415292
iter  50 value 80.385597
iter  60 value 80.322533
iter  70 value 80.032422
iter  80 value 79.580053
iter  90 value 79.541568
final  value 79.541557 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.472978 
iter  10 value 93.017930
iter  20 value 86.329579
iter  30 value 85.022120
iter  40 value 83.663473
iter  50 value 83.362926
iter  60 value 82.960144
iter  70 value 81.004332
iter  80 value 80.189768
iter  90 value 80.058182
final  value 80.057782 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.511297 
iter  10 value 94.055502
iter  20 value 93.937124
iter  30 value 90.901382
iter  40 value 84.292062
iter  50 value 83.172198
iter  60 value 82.249570
iter  70 value 81.984675
iter  80 value 81.925904
iter  90 value 80.601905
iter 100 value 80.275236
final  value 80.275236 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 96.953981 
iter  10 value 94.065792
iter  20 value 94.038729
iter  30 value 93.875963
iter  40 value 91.519891
iter  50 value 91.360771
iter  60 value 84.644903
iter  70 value 82.614154
iter  80 value 82.403499
iter  90 value 81.663154
iter 100 value 81.427359
final  value 81.427359 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 99.573627 
iter  10 value 87.623443
iter  20 value 83.881518
iter  30 value 83.027713
iter  40 value 81.900780
iter  50 value 81.448527
iter  60 value 81.429690
final  value 81.429544 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.390167 
iter  10 value 94.024411
iter  20 value 85.358605
iter  30 value 84.659685
iter  40 value 83.477888
iter  50 value 81.536334
iter  60 value 81.158739
iter  70 value 81.085228
iter  80 value 80.646773
iter  90 value 79.121025
iter 100 value 78.406842
final  value 78.406842 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.812534 
iter  10 value 93.398943
iter  20 value 85.941747
iter  30 value 84.467705
iter  40 value 83.076034
iter  50 value 80.915427
iter  60 value 79.781029
iter  70 value 79.425190
iter  80 value 78.459280
iter  90 value 78.376310
iter 100 value 78.334537
final  value 78.334537 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.213766 
iter  10 value 93.534624
iter  20 value 85.436981
iter  30 value 85.002602
iter  40 value 84.075648
iter  50 value 82.624945
iter  60 value 82.109734
iter  70 value 82.019035
iter  80 value 81.965792
iter  90 value 81.389854
iter 100 value 79.961961
final  value 79.961961 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 116.705443 
iter  10 value 93.697868
iter  20 value 84.432520
iter  30 value 81.686508
iter  40 value 81.189908
iter  50 value 80.523365
iter  60 value 80.071929
iter  70 value 79.370666
iter  80 value 79.332015
iter  90 value 79.304381
iter 100 value 79.262597
final  value 79.262597 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.534065 
iter  10 value 94.775380
iter  20 value 89.019307
iter  30 value 84.586015
iter  40 value 83.586832
iter  50 value 80.758816
iter  60 value 79.657726
iter  70 value 78.819766
iter  80 value 78.557507
iter  90 value 78.479482
iter 100 value 78.172393
final  value 78.172393 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 117.919540 
iter  10 value 95.374695
iter  20 value 94.153934
iter  30 value 87.938370
iter  40 value 82.178120
iter  50 value 80.750013
iter  60 value 80.159786
iter  70 value 79.671982
iter  80 value 78.816089
iter  90 value 78.439187
iter 100 value 78.248566
final  value 78.248566 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 117.149119 
iter  10 value 94.004000
iter  20 value 91.975290
iter  30 value 84.396409
iter  40 value 81.540108
iter  50 value 80.842038
iter  60 value 80.257769
iter  70 value 79.744881
iter  80 value 79.305181
iter  90 value 79.163941
iter 100 value 78.931539
final  value 78.931539 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 101.398920 
iter  10 value 87.318687
iter  20 value 84.339904
iter  30 value 83.218025
iter  40 value 80.729640
iter  50 value 79.961260
iter  60 value 79.605896
iter  70 value 78.627649
iter  80 value 78.216538
iter  90 value 78.036890
iter 100 value 77.921402
final  value 77.921402 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.053790 
iter  10 value 94.122336
iter  20 value 91.588054
iter  30 value 87.454652
iter  40 value 85.547139
iter  50 value 83.448668
iter  60 value 82.074522
iter  70 value 80.176169
iter  80 value 79.252862
iter  90 value 78.847779
iter 100 value 78.446647
final  value 78.446647 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.343187 
iter  10 value 92.660510
iter  20 value 89.159080
iter  30 value 82.944121
iter  40 value 81.824345
iter  50 value 80.707441
iter  60 value 79.573799
iter  70 value 79.089353
iter  80 value 78.638157
iter  90 value 78.506786
iter 100 value 78.151731
final  value 78.151731 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.405871 
final  value 94.054678 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.688761 
final  value 94.054622 
converged
Fitting Repeat 3 

# weights:  103
initial  value 117.995992 
final  value 94.054591 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.218574 
final  value 94.044829 
converged
Fitting Repeat 5 

# weights:  103
initial  value 115.511715 
final  value 94.054750 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.979159 
iter  10 value 93.920394
iter  20 value 93.915767
iter  30 value 93.488687
iter  40 value 93.027107
iter  50 value 92.625786
final  value 92.625784 
converged
Fitting Repeat 2 

# weights:  305
initial  value 106.732951 
iter  10 value 93.939796
iter  20 value 93.918164
iter  30 value 93.857365
iter  40 value 93.852143
iter  50 value 91.409923
iter  60 value 90.130879
iter  70 value 89.624854
iter  80 value 89.624293
final  value 89.624237 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.037631 
iter  10 value 93.920565
iter  20 value 93.845023
iter  20 value 93.845022
iter  20 value 93.845022
final  value 93.845022 
converged
Fitting Repeat 4 

# weights:  305
initial  value 112.583655 
iter  10 value 94.058047
iter  20 value 92.374933
iter  30 value 82.740083
iter  40 value 82.711483
iter  50 value 82.710164
iter  60 value 82.709404
iter  70 value 82.708461
final  value 82.708312 
converged
Fitting Repeat 5 

# weights:  305
initial  value 120.621750 
iter  10 value 94.057753
iter  20 value 94.053358
iter  30 value 93.944015
iter  40 value 88.830040
iter  50 value 83.239361
iter  60 value 80.603498
iter  70 value 80.338425
iter  80 value 79.256201
iter  90 value 78.733585
iter 100 value 78.733260
final  value 78.733260 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 97.532749 
iter  10 value 93.929658
iter  20 value 93.929198
iter  30 value 93.922112
iter  40 value 89.481588
iter  50 value 82.445748
iter  60 value 78.909638
iter  70 value 78.457910
iter  80 value 78.334195
final  value 78.333598 
converged
Fitting Repeat 2 

# weights:  507
initial  value 93.146352 
iter  10 value 82.671622
iter  20 value 82.621695
iter  30 value 82.525563
final  value 82.511729 
converged
Fitting Repeat 3 

# weights:  507
initial  value 98.219445 
iter  10 value 94.006990
iter  20 value 94.001117
iter  30 value 94.000033
iter  40 value 90.346567
iter  50 value 90.226607
iter  60 value 90.124239
iter  70 value 90.122498
iter  70 value 90.122497
iter  70 value 90.122497
final  value 90.122497 
converged
Fitting Repeat 4 

# weights:  507
initial  value 110.448783 
iter  10 value 93.868215
iter  20 value 93.861032
iter  30 value 93.849201
iter  40 value 93.134084
iter  50 value 85.490272
iter  60 value 84.637142
final  value 84.634964 
converged
Fitting Repeat 5 

# weights:  507
initial  value 107.071600 
iter  10 value 93.923627
iter  20 value 93.825126
iter  30 value 91.996025
iter  40 value 86.258342
iter  50 value 83.188933
iter  60 value 81.995257
iter  70 value 81.963527
iter  80 value 81.963478
iter  90 value 81.963174
final  value 81.963077 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.003281 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.782625 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.600650 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.070587 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.038853 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 112.073153 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.449330 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.511187 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.703663 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.754771 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 112.423006 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.535265 
iter  10 value 90.386092
iter  20 value 89.140065
iter  30 value 89.138123
final  value 89.138111 
converged
Fitting Repeat 3 

# weights:  507
initial  value 117.764571 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 114.066592 
final  value 94.428839 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.529748 
iter  10 value 93.942752
final  value 93.941399 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.818029 
iter  10 value 94.088803
iter  20 value 90.660702
iter  30 value 88.023561
iter  40 value 87.429271
iter  50 value 86.853791
iter  60 value 85.715633
iter  70 value 85.706029
iter  80 value 85.702689
final  value 85.702012 
converged
Fitting Repeat 2 

# weights:  103
initial  value 108.197344 
iter  10 value 94.489045
iter  20 value 93.548765
iter  30 value 87.422885
iter  40 value 86.009885
iter  50 value 85.089758
iter  60 value 84.350975
iter  70 value 84.205888
iter  80 value 83.968845
iter  90 value 83.911800
iter 100 value 83.879082
final  value 83.879082 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 98.321968 
iter  10 value 94.569456
iter  20 value 89.541547
iter  30 value 87.386187
iter  40 value 87.030039
iter  50 value 86.182959
iter  60 value 86.000187
iter  70 value 85.773258
iter  80 value 85.734989
iter  90 value 85.709733
iter 100 value 85.704438
final  value 85.704438 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 99.131662 
iter  10 value 94.463307
iter  20 value 90.921107
iter  30 value 89.381103
iter  40 value 88.620510
iter  50 value 88.060925
iter  60 value 86.286680
iter  70 value 85.816538
iter  80 value 85.728517
iter  90 value 85.703211
final  value 85.702011 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.624786 
iter  10 value 94.441731
iter  20 value 88.652459
iter  30 value 87.992199
iter  40 value 87.417084
iter  50 value 87.248946
iter  60 value 86.222276
iter  70 value 85.653217
iter  80 value 85.590640
iter  90 value 85.538350
iter  90 value 85.538350
iter  90 value 85.538350
final  value 85.538350 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.142925 
iter  10 value 93.764489
iter  20 value 92.511880
iter  30 value 92.447432
iter  40 value 92.395193
iter  50 value 92.359908
iter  60 value 92.087226
iter  70 value 88.423924
iter  80 value 88.034919
iter  90 value 87.894398
iter 100 value 86.953941
final  value 86.953941 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.714682 
iter  10 value 94.596081
iter  20 value 92.660786
iter  30 value 90.811887
iter  40 value 90.223935
iter  50 value 89.099382
iter  60 value 86.068599
iter  70 value 85.153170
iter  80 value 84.314831
iter  90 value 84.173897
iter 100 value 83.839976
final  value 83.839976 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 119.510319 
iter  10 value 94.511985
iter  20 value 87.905322
iter  30 value 87.221252
iter  40 value 86.732295
iter  50 value 86.493411
iter  60 value 85.756538
iter  70 value 85.532152
iter  80 value 84.372852
iter  90 value 83.387419
iter 100 value 83.184599
final  value 83.184599 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 110.342222 
iter  10 value 94.346667
iter  20 value 87.723581
iter  30 value 87.443384
iter  40 value 86.839450
iter  50 value 84.942351
iter  60 value 84.163510
iter  70 value 83.833803
iter  80 value 83.180858
iter  90 value 82.552886
iter 100 value 82.377868
final  value 82.377868 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.831884 
iter  10 value 93.477558
iter  20 value 91.281873
iter  30 value 87.752658
iter  40 value 85.599416
iter  50 value 84.297715
iter  60 value 83.537629
iter  70 value 83.381130
iter  80 value 83.355012
iter  90 value 83.242331
iter 100 value 83.213375
final  value 83.213375 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 119.968875 
iter  10 value 94.530775
iter  20 value 91.181963
iter  30 value 87.351958
iter  40 value 86.500077
iter  50 value 86.073540
iter  60 value 84.186619
iter  70 value 83.262757
iter  80 value 82.956343
iter  90 value 82.607621
iter 100 value 82.427117
final  value 82.427117 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 115.006941 
iter  10 value 94.636750
iter  20 value 94.537572
iter  30 value 90.991863
iter  40 value 89.107372
iter  50 value 88.868603
iter  60 value 86.473422
iter  70 value 85.779996
iter  80 value 84.801324
iter  90 value 84.626268
iter 100 value 84.482637
final  value 84.482637 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.520942 
iter  10 value 94.395474
iter  20 value 87.901971
iter  30 value 87.216928
iter  40 value 86.268821
iter  50 value 83.947813
iter  60 value 83.186628
iter  70 value 82.985302
iter  80 value 82.909432
iter  90 value 82.625795
iter 100 value 82.602276
final  value 82.602276 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 135.328433 
iter  10 value 97.591473
iter  20 value 88.786339
iter  30 value 86.973898
iter  40 value 86.513507
iter  50 value 84.246749
iter  60 value 83.165139
iter  70 value 83.051226
iter  80 value 82.979231
iter  90 value 82.811541
iter 100 value 82.530455
final  value 82.530455 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.416047 
iter  10 value 94.530676
iter  20 value 89.507077
iter  30 value 87.938539
iter  40 value 87.711445
iter  50 value 87.390706
iter  60 value 87.300622
iter  70 value 87.036074
iter  80 value 84.852099
iter  90 value 83.825606
iter 100 value 82.893743
final  value 82.893743 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.694203 
final  value 94.485807 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.967720 
iter  10 value 94.486052
iter  20 value 94.484084
iter  30 value 94.463297
iter  40 value 86.643253
iter  50 value 86.297689
iter  60 value 86.267992
iter  70 value 86.257776
iter  80 value 86.154411
iter  90 value 86.144504
final  value 86.144497 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.589161 
final  value 94.485841 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.367545 
iter  10 value 94.431269
iter  20 value 94.430439
iter  30 value 89.151954
iter  40 value 89.143561
iter  50 value 88.747790
iter  60 value 88.742826
final  value 88.742785 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.392388 
final  value 94.486218 
converged
Fitting Repeat 1 

# weights:  305
initial  value 120.716118 
iter  10 value 94.488753
iter  20 value 94.484433
iter  30 value 89.429374
iter  40 value 89.423979
iter  50 value 89.422728
iter  60 value 88.501665
iter  70 value 88.499478
iter  80 value 87.608795
final  value 87.547373 
converged
Fitting Repeat 2 

# weights:  305
initial  value 108.793044 
iter  10 value 94.488960
iter  20 value 94.405953
iter  30 value 93.816063
iter  40 value 93.791483
final  value 93.791457 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.092264 
iter  10 value 93.912621
iter  20 value 93.644634
iter  30 value 93.639253
iter  40 value 93.512683
iter  50 value 88.949651
iter  60 value 88.934930
final  value 88.934826 
converged
Fitting Repeat 4 

# weights:  305
initial  value 127.868284 
iter  10 value 94.471909
iter  20 value 94.468242
iter  30 value 92.706631
iter  40 value 91.138942
iter  50 value 85.671782
iter  60 value 83.687399
iter  70 value 82.755467
iter  80 value 82.485071
iter  90 value 82.475134
iter 100 value 82.474839
final  value 82.474839 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 96.617762 
iter  10 value 94.471532
iter  20 value 93.146709
iter  30 value 92.931106
final  value 92.931063 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.957194 
iter  10 value 94.436932
iter  20 value 94.430900
iter  30 value 94.424327
final  value 94.424317 
converged
Fitting Repeat 2 

# weights:  507
initial  value 111.067911 
iter  10 value 94.492398
iter  20 value 94.484247
iter  30 value 94.164391
iter  40 value 93.484801
iter  50 value 93.280758
iter  60 value 92.970487
final  value 92.970474 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.656079 
iter  10 value 94.493026
iter  20 value 94.463241
iter  30 value 90.643165
iter  40 value 89.146340
iter  50 value 89.133395
iter  60 value 84.945454
iter  70 value 82.666659
iter  80 value 82.655573
iter  90 value 82.654723
iter 100 value 82.652529
final  value 82.652529 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 100.089073 
iter  10 value 94.492853
iter  20 value 87.458258
iter  30 value 87.343526
final  value 87.343204 
converged
Fitting Repeat 5 

# weights:  507
initial  value 122.578132 
iter  10 value 94.481531
iter  20 value 94.472328
iter  30 value 91.539910
iter  40 value 86.831844
iter  50 value 86.369385
final  value 86.369376 
converged
Fitting Repeat 1 

# weights:  507
initial  value 137.708221 
iter  10 value 117.975766
iter  20 value 117.761207
iter  30 value 117.568501
iter  40 value 116.647805
iter  50 value 105.562235
iter  60 value 102.455364
iter  70 value 101.299829
iter  80 value 100.589663
iter  90 value 100.541144
iter 100 value 100.379232
final  value 100.379232 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 132.819875 
iter  10 value 117.785940
iter  20 value 115.973810
iter  30 value 107.337281
iter  40 value 105.843343
iter  50 value 104.946186
iter  60 value 104.299244
iter  70 value 104.017035
iter  80 value 102.850819
iter  90 value 102.117785
iter 100 value 101.420224
final  value 101.420224 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 133.622999 
iter  10 value 116.006139
iter  20 value 107.255170
iter  30 value 104.003458
iter  40 value 102.500560
iter  50 value 102.116029
iter  60 value 101.913348
iter  70 value 101.796772
iter  80 value 101.409719
iter  90 value 101.039790
iter 100 value 100.950558
final  value 100.950558 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 148.854052 
iter  10 value 118.748692
iter  20 value 114.060801
iter  30 value 107.676113
iter  40 value 107.293197
iter  50 value 104.422551
iter  60 value 102.418808
iter  70 value 101.575824
iter  80 value 101.080330
iter  90 value 100.977051
iter 100 value 100.525157
final  value 100.525157 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 131.041544 
iter  10 value 117.197829
iter  20 value 115.409986
iter  30 value 114.721478
iter  40 value 106.551326
iter  50 value 105.317940
iter  60 value 103.546370
iter  70 value 103.240271
iter  80 value 102.826858
iter  90 value 102.547445
iter 100 value 102.251425
final  value 102.251425 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Thu Jan 30 23:09:24 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 39.052   1.156  55.022 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod33.823 0.49134.315
FreqInteractors0.2020.0110.214
calculateAAC0.0320.0040.038
calculateAutocor0.3050.0210.327
calculateCTDC0.0690.0000.070
calculateCTDD0.4840.0070.491
calculateCTDT0.1850.0010.186
calculateCTriad0.4080.0150.424
calculateDC0.0790.0020.081
calculateF0.2840.0090.293
calculateKSAAP0.0880.0010.089
calculateQD_Sm1.9300.0171.949
calculateTC1.4140.0261.441
calculateTC_Sm0.2480.0010.249
corr_plot33.270 0.18333.526
enrichfindP0.5150.0288.155
enrichfind_hp0.0730.0031.003
enrichplot0.3590.0030.363
filter_missing_values0.0010.0000.002
getFASTA0.4740.0073.841
getHPI0.0010.0000.001
get_negativePPI0.0030.0000.003
get_positivePPI0.0000.0010.000
impute_missing_data0.0020.0010.003
plotPPI0.0680.0010.070
pred_ensembel12.613 0.27411.623
var_imp33.305 0.41533.787