Chapter 12 Bach mouse mammary gland (10X Genomics)

12.1 Introduction

This performs an analysis of the Bach et al. (2017) 10X Genomics dataset, from which we will consider a single sample of epithelial cells from the mouse mammary gland during gestation.

12.4 Normalization

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.271   0.522   0.758   1.000   1.204  10.958
Relationship between the library size factors and the deconvolution size factors in the Bach mammary gland dataset.

Figure 12.3: Relationship between the library size factors and the deconvolution size factors in the Bach mammary gland dataset.

12.5 Variance modelling

We use a Poisson-based technical trend to capture more genuine biological variation in the biological component.

Per-gene variance as a function of the mean for the log-expression values in the Bach mammary gland dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to simulated Poisson counts.

Figure 12.4: Per-gene variance as a function of the mean for the log-expression values in the Bach mammary gland dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to simulated Poisson counts.

12.7 Clustering

We use a higher k to obtain coarser clusters (for use in doubletCluster() later).

## 
##   1   2   3   4   5   6   7   8   9  10 
## 550 799 716 452  24  84  52  39  32  24
Obligatory $t$-SNE plot of the Bach mammary gland dataset, where each point represents a cell and is colored according to the assigned cluster.

Figure 12.5: Obligatory \(t\)-SNE plot of the Bach mammary gland dataset, where each point represents a cell and is colored according to the assigned cluster.

Session Info

R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] BiocSingular_1.8.0          scran_1.20.0               
 [3] AnnotationHub_3.0.0         BiocFileCache_2.0.0        
 [5] dbplyr_2.1.1                scater_1.20.0              
 [7] ggplot2_3.3.3               scuttle_1.2.0              
 [9] ensembldb_2.16.0            AnnotationFilter_1.16.0    
[11] GenomicFeatures_1.44.0      AnnotationDbi_1.54.0       
[13] scRNAseq_2.6.0              SingleCellExperiment_1.14.0
[15] SummarizedExperiment_1.22.0 Biobase_2.52.0             
[17] GenomicRanges_1.44.0        GenomeInfoDb_1.28.0        
[19] IRanges_2.26.0              S4Vectors_0.30.0           
[21] BiocGenerics_0.38.0         MatrixGenerics_1.4.0       
[23] matrixStats_0.58.0          BiocStyle_2.20.0           
[25] rebook_1.2.0               

loaded via a namespace (and not attached):
  [1] igraph_1.2.6                  lazyeval_0.2.2               
  [3] BiocParallel_1.26.0           digest_0.6.27                
  [5] htmltools_0.5.1.1             viridis_0.6.1                
  [7] fansi_0.4.2                   magrittr_2.0.1               
  [9] memoise_2.0.0                 ScaledMatrix_1.0.0           
 [11] cluster_2.1.2                 limma_3.48.0                 
 [13] Biostrings_2.60.0             prettyunits_1.1.1            
 [15] colorspace_2.0-1              blob_1.2.1                   
 [17] rappdirs_0.3.3                xfun_0.23                    
 [19] dplyr_1.0.6                   crayon_1.4.1                 
 [21] RCurl_1.98-1.3                jsonlite_1.7.2               
 [23] graph_1.70.0                  glue_1.4.2                   
 [25] gtable_0.3.0                  zlibbioc_1.38.0              
 [27] XVector_0.32.0                DelayedArray_0.18.0          
 [29] scales_1.1.1                  edgeR_3.34.0                 
 [31] DBI_1.1.1                     Rcpp_1.0.6                   
 [33] viridisLite_0.4.0             xtable_1.8-4                 
 [35] progress_1.2.2                dqrng_0.3.0                  
 [37] bit_4.0.4                     rsvd_1.0.5                   
 [39] metapod_1.0.0                 httr_1.4.2                   
 [41] dir.expiry_1.0.0              ellipsis_0.3.2               
 [43] pkgconfig_2.0.3               XML_3.99-0.6                 
 [45] farver_2.1.0                  CodeDepends_0.6.5            
 [47] sass_0.4.0                    locfit_1.5-9.4               
 [49] utf8_1.2.1                    tidyselect_1.1.1             
 [51] labeling_0.4.2                rlang_0.4.11                 
 [53] later_1.2.0                   munsell_0.5.0                
 [55] BiocVersion_3.13.1            tools_4.1.0                  
 [57] cachem_1.0.5                  generics_0.1.0               
 [59] RSQLite_2.2.7                 ExperimentHub_2.0.0          
 [61] evaluate_0.14                 stringr_1.4.0                
 [63] fastmap_1.1.0                 yaml_2.2.1                   
 [65] knitr_1.33                    bit64_4.0.5                  
 [67] purrr_0.3.4                   KEGGREST_1.32.0              
 [69] sparseMatrixStats_1.4.0       mime_0.10                    
 [71] biomaRt_2.48.0                compiler_4.1.0               
 [73] beeswarm_0.3.1                filelock_1.0.2               
 [75] curl_4.3.1                    png_0.1-7                    
 [77] interactiveDisplayBase_1.30.0 statmod_1.4.36               
 [79] tibble_3.1.2                  bslib_0.2.5.1                
 [81] stringi_1.6.2                 highr_0.9                    
 [83] bluster_1.2.0                 lattice_0.20-44              
 [85] ProtGenerics_1.24.0           Matrix_1.3-3                 
 [87] vctrs_0.3.8                   pillar_1.6.1                 
 [89] lifecycle_1.0.0               BiocManager_1.30.15          
 [91] jquerylib_0.1.4               BiocNeighbors_1.10.0         
 [93] cowplot_1.1.1                 bitops_1.0-7                 
 [95] irlba_2.3.3                   httpuv_1.6.1                 
 [97] rtracklayer_1.52.0            R6_2.5.0                     
 [99] BiocIO_1.2.0                  bookdown_0.22                
[101] promises_1.2.0.1              gridExtra_2.3                
[103] vipor_0.4.5                   codetools_0.2-18             
[105] assertthat_0.2.1              rjson_0.2.20                 
[107] withr_2.4.2                   GenomicAlignments_1.28.0     
[109] Rsamtools_2.8.0               GenomeInfoDbData_1.2.6       
[111] hms_1.1.0                     grid_4.1.0                   
[113] beachmat_2.8.0                rmarkdown_2.8                
[115] DelayedMatrixStats_1.14.0     Rtsne_0.15                   
[117] shiny_1.6.0                   ggbeeswarm_0.6.0             
[119] restfulr_0.0.13              

References

Bach, K., S. Pensa, M. Grzelak, J. Hadfield, D. J. Adams, J. C. Marioni, and W. T. Khaled. 2017. “Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing.” Nat Commun 8 (1): 2128.