Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-02-04 11:42 -0500 (Tue, 04 Feb 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" | 4716 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-01-21 r87610 ucrt) -- "Unsuffered Consequences" | 4478 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-01-22 r87618) -- "Unsuffered Consequences" | 4489 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" | 4442 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 981/2295 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | |||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-02-03 21:07:03 -0500 (Mon, 03 Feb 2025) |
EndedAt: 2025-02-03 21:13:02 -0500 (Mon, 03 Feb 2025) |
EllapsedTime: 358.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R Under development (unstable) (2025-01-22 r87618) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.13.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 33.864 1.682 35.839 var_imp 33.456 1.734 35.473 corr_plot 33.300 1.661 35.186 pred_ensembel 13.231 0.428 11.835 enrichfindP 0.467 0.056 7.970 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.13.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-01-22 r87618) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 98.050354 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.520779 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.887481 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.704808 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.240054 iter 10 value 94.467391 iter 10 value 94.467391 iter 10 value 94.467391 final value 94.467391 converged Fitting Repeat 1 # weights: 305 initial value 100.093301 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 117.331363 final value 94.467391 converged Fitting Repeat 3 # weights: 305 initial value 104.247177 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 101.541154 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 107.377680 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 106.967426 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 98.181708 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 98.708409 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 100.226976 iter 10 value 90.888695 iter 20 value 88.637667 iter 30 value 87.518525 iter 40 value 87.156657 iter 50 value 86.485521 iter 60 value 84.246273 iter 70 value 83.995264 iter 80 value 83.994424 iter 90 value 83.994078 iter 100 value 83.993873 final value 83.993873 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.050062 final value 94.484210 converged Fitting Repeat 1 # weights: 103 initial value 105.899309 iter 10 value 94.482401 iter 20 value 92.891305 iter 30 value 92.708393 iter 40 value 88.443593 iter 50 value 87.697757 iter 60 value 87.022821 iter 70 value 86.913541 iter 80 value 86.770063 iter 90 value 86.743907 final value 86.743605 converged Fitting Repeat 2 # weights: 103 initial value 97.372276 iter 10 value 94.481674 iter 20 value 94.467538 iter 30 value 91.864110 iter 40 value 88.996568 iter 50 value 88.194254 iter 60 value 87.536931 iter 70 value 87.127159 iter 80 value 87.089976 final value 87.089777 converged Fitting Repeat 3 # weights: 103 initial value 97.839653 iter 10 value 94.488304 iter 20 value 92.635318 iter 30 value 88.795526 iter 40 value 88.000431 iter 50 value 87.605361 iter 60 value 87.134318 iter 70 value 87.089779 final value 87.089777 converged Fitting Repeat 4 # weights: 103 initial value 99.440687 iter 10 value 94.442723 iter 20 value 93.061825 iter 30 value 92.416096 iter 40 value 88.336514 iter 50 value 87.978693 iter 60 value 87.376547 iter 70 value 87.179038 iter 80 value 87.093752 final value 87.089778 converged Fitting Repeat 5 # weights: 103 initial value 117.467395 iter 10 value 94.504547 iter 20 value 93.796024 iter 30 value 88.304628 iter 40 value 87.482309 iter 50 value 87.327527 iter 60 value 87.321124 final value 87.321106 converged Fitting Repeat 1 # weights: 305 initial value 113.136970 iter 10 value 94.461484 iter 20 value 91.155160 iter 30 value 89.306920 iter 40 value 88.157281 iter 50 value 86.720847 iter 60 value 86.232473 iter 70 value 85.942959 iter 80 value 84.912287 iter 90 value 84.451480 iter 100 value 84.352094 final value 84.352094 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.220384 iter 10 value 94.011552 iter 20 value 92.517500 iter 30 value 89.676073 iter 40 value 89.186972 iter 50 value 85.760161 iter 60 value 85.237664 iter 70 value 84.916638 iter 80 value 84.875871 iter 90 value 84.680324 iter 100 value 84.517833 final value 84.517833 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 118.900574 iter 10 value 94.534100 iter 20 value 94.486313 iter 30 value 94.340992 iter 40 value 93.000836 iter 50 value 92.692552 iter 60 value 92.617022 iter 70 value 92.542589 iter 80 value 92.471246 iter 90 value 92.197960 iter 100 value 87.302764 final value 87.302764 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.853233 iter 10 value 94.493155 iter 20 value 91.764778 iter 30 value 90.044043 iter 40 value 87.181179 iter 50 value 85.755540 iter 60 value 84.751665 iter 70 value 84.172634 iter 80 value 84.111062 iter 90 value 84.094270 iter 100 value 84.060727 final value 84.060727 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.352894 iter 10 value 90.231367 iter 20 value 88.845997 iter 30 value 87.487579 iter 40 value 87.243521 iter 50 value 86.579708 iter 60 value 85.101090 iter 70 value 84.202049 iter 80 value 84.020526 iter 90 value 83.789148 iter 100 value 83.681767 final value 83.681767 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.778346 iter 10 value 95.860743 iter 20 value 91.791088 iter 30 value 89.383602 iter 40 value 88.109916 iter 50 value 87.131895 iter 60 value 85.840984 iter 70 value 85.174623 iter 80 value 84.820273 iter 90 value 84.550444 iter 100 value 84.129200 final value 84.129200 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.976443 iter 10 value 94.595110 iter 20 value 92.171781 iter 30 value 86.914236 iter 40 value 84.802929 iter 50 value 84.151508 iter 60 value 83.989755 iter 70 value 83.933105 iter 80 value 83.788104 iter 90 value 83.665819 iter 100 value 83.540682 final value 83.540682 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.482751 iter 10 value 94.005417 iter 20 value 90.585306 iter 30 value 89.883174 iter 40 value 86.341585 iter 50 value 85.445066 iter 60 value 84.637504 iter 70 value 84.155145 iter 80 value 83.929551 iter 90 value 83.893725 iter 100 value 83.864861 final value 83.864861 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 134.523310 iter 10 value 94.562058 iter 20 value 88.337992 iter 30 value 87.951783 iter 40 value 87.871997 iter 50 value 86.468920 iter 60 value 85.882516 iter 70 value 85.723172 iter 80 value 84.669487 iter 90 value 84.229870 iter 100 value 84.185481 final value 84.185481 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 123.180743 iter 10 value 94.613863 iter 20 value 93.810534 iter 30 value 89.122977 iter 40 value 87.618811 iter 50 value 87.010896 iter 60 value 86.487485 iter 70 value 85.574145 iter 80 value 84.609159 iter 90 value 84.442763 iter 100 value 84.303284 final value 84.303284 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.871915 final value 94.486004 converged Fitting Repeat 2 # weights: 103 initial value 96.944076 final value 94.485601 converged Fitting Repeat 3 # weights: 103 initial value 100.828792 final value 94.482065 converged Fitting Repeat 4 # weights: 103 initial value 95.834572 final value 94.486026 converged Fitting Repeat 5 # weights: 103 initial value 106.107075 final value 94.486330 converged Fitting Repeat 1 # weights: 305 initial value 95.130447 iter 10 value 94.488719 iter 20 value 94.483936 iter 30 value 93.947082 iter 40 value 90.494931 iter 50 value 88.215324 iter 60 value 88.020809 iter 70 value 88.011237 final value 88.011232 converged Fitting Repeat 2 # weights: 305 initial value 104.979816 iter 10 value 94.619742 iter 20 value 94.597952 iter 30 value 93.358247 iter 40 value 93.251526 iter 50 value 93.223525 iter 60 value 93.076406 iter 70 value 89.899736 iter 80 value 89.391318 iter 90 value 89.389974 iter 100 value 87.151246 final value 87.151246 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 97.613310 iter 10 value 88.144917 iter 20 value 87.440225 iter 30 value 87.370469 final value 87.369501 converged Fitting Repeat 4 # weights: 305 initial value 97.026627 iter 10 value 94.489387 iter 20 value 94.455605 iter 30 value 92.875594 iter 40 value 87.127592 iter 50 value 86.927351 iter 60 value 85.609827 iter 70 value 85.580837 iter 80 value 85.395462 iter 90 value 84.932740 iter 100 value 82.946245 final value 82.946245 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.821632 iter 10 value 94.473735 iter 20 value 94.469695 iter 30 value 92.896081 iter 40 value 90.776746 iter 50 value 90.774203 iter 60 value 90.772719 iter 70 value 90.772284 iter 80 value 89.897469 iter 90 value 89.800764 final value 89.800498 converged Fitting Repeat 1 # weights: 507 initial value 111.668658 iter 10 value 94.475701 iter 20 value 94.472555 iter 30 value 94.450119 iter 40 value 93.184467 iter 50 value 92.062709 iter 60 value 92.028052 iter 70 value 92.003435 final value 92.003408 converged Fitting Repeat 2 # weights: 507 initial value 103.342825 iter 10 value 94.300970 iter 20 value 94.299489 iter 30 value 94.299157 iter 40 value 94.295670 iter 50 value 94.284916 iter 60 value 94.282564 iter 70 value 88.569134 iter 80 value 87.693149 iter 90 value 87.688233 iter 100 value 86.947042 final value 86.947042 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.848980 iter 10 value 89.411133 iter 20 value 89.131266 iter 30 value 89.030841 iter 40 value 88.770409 iter 50 value 88.600129 iter 60 value 88.597030 iter 70 value 88.286915 iter 80 value 87.575018 iter 90 value 87.559440 iter 100 value 87.558284 final value 87.558284 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 102.299912 iter 10 value 93.959003 iter 20 value 93.939922 iter 30 value 93.606311 iter 40 value 93.223393 iter 50 value 92.630424 iter 60 value 92.307276 final value 92.306964 converged Fitting Repeat 5 # weights: 507 initial value 113.189190 iter 10 value 94.492822 iter 20 value 94.484334 iter 30 value 94.464830 iter 40 value 94.326368 final value 94.326265 converged Fitting Repeat 1 # weights: 103 initial value 94.886220 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.267698 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 109.914661 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 108.908271 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.792329 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.057272 final value 93.915746 converged Fitting Repeat 2 # weights: 305 initial value 96.395167 final value 93.915746 converged Fitting Repeat 3 # weights: 305 initial value 110.582755 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 99.120801 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 108.751424 iter 10 value 93.719469 final value 93.719417 converged Fitting Repeat 1 # weights: 507 initial value 109.001556 final value 93.915746 converged Fitting Repeat 2 # weights: 507 initial value 110.843339 final value 93.915746 converged Fitting Repeat 3 # weights: 507 initial value 94.194270 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 98.542444 iter 10 value 92.254603 iter 20 value 92.208922 iter 20 value 92.208922 iter 20 value 92.208922 final value 92.208922 converged Fitting Repeat 5 # weights: 507 initial value 103.550159 final value 93.531865 converged Fitting Repeat 1 # weights: 103 initial value 95.734995 iter 10 value 92.821412 iter 20 value 86.749979 iter 30 value 86.073086 iter 40 value 85.826638 iter 50 value 85.583159 iter 60 value 85.398578 final value 85.398298 converged Fitting Repeat 2 # weights: 103 initial value 100.349789 iter 10 value 93.853307 iter 20 value 93.520129 iter 30 value 93.516795 iter 30 value 93.516795 final value 93.516795 converged Fitting Repeat 3 # weights: 103 initial value 102.785631 iter 10 value 92.588228 iter 20 value 86.811969 iter 30 value 86.288874 iter 40 value 85.850892 iter 50 value 85.402841 iter 60 value 85.398300 final value 85.398298 converged Fitting Repeat 4 # weights: 103 initial value 104.111089 iter 10 value 93.078546 iter 20 value 90.000717 iter 30 value 89.528652 iter 40 value 86.852080 iter 50 value 86.696714 iter 60 value 86.608070 iter 70 value 85.905551 iter 80 value 85.356454 iter 90 value 85.238622 iter 100 value 85.212324 final value 85.212324 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.961756 iter 10 value 94.056606 iter 20 value 91.169183 iter 30 value 88.625022 iter 40 value 86.580829 iter 50 value 84.624080 iter 60 value 83.291924 iter 70 value 82.339300 iter 80 value 81.835403 iter 90 value 81.679354 iter 100 value 81.664688 final value 81.664688 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 119.253831 iter 10 value 94.324439 iter 20 value 90.011254 iter 30 value 86.993632 iter 40 value 86.410346 iter 50 value 85.889996 iter 60 value 85.626089 iter 70 value 83.113116 iter 80 value 82.915633 iter 90 value 82.696104 iter 100 value 82.583844 final value 82.583844 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.551085 iter 10 value 94.289367 iter 20 value 94.068178 iter 30 value 89.208219 iter 40 value 84.880837 iter 50 value 83.628705 iter 60 value 82.855411 iter 70 value 82.184322 iter 80 value 81.911577 iter 90 value 81.688372 iter 100 value 81.428584 final value 81.428584 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.774877 iter 10 value 93.737117 iter 20 value 86.122877 iter 30 value 85.577661 iter 40 value 85.132973 iter 50 value 85.068969 iter 60 value 83.351184 iter 70 value 82.371117 iter 80 value 82.208570 iter 90 value 82.024298 iter 100 value 81.344948 final value 81.344948 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.028375 iter 10 value 94.200388 iter 20 value 91.399987 iter 30 value 88.518701 iter 40 value 87.370085 iter 50 value 86.337466 iter 60 value 83.759454 iter 70 value 83.226085 iter 80 value 82.536863 iter 90 value 81.042567 iter 100 value 80.838742 final value 80.838742 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.091709 iter 10 value 93.921292 iter 20 value 91.469970 iter 30 value 86.029180 iter 40 value 85.578139 iter 50 value 82.711851 iter 60 value 82.035063 iter 70 value 81.310078 iter 80 value 80.982596 iter 90 value 80.778732 iter 100 value 80.686317 final value 80.686317 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.378034 iter 10 value 94.889113 iter 20 value 93.548870 iter 30 value 90.518020 iter 40 value 87.455337 iter 50 value 86.780202 iter 60 value 86.406255 iter 70 value 83.405311 iter 80 value 82.689015 iter 90 value 82.223502 iter 100 value 82.137707 final value 82.137707 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.951657 iter 10 value 97.501639 iter 20 value 88.712291 iter 30 value 86.135797 iter 40 value 83.520977 iter 50 value 82.061846 iter 60 value 81.654948 iter 70 value 81.579648 iter 80 value 81.346319 iter 90 value 81.331524 iter 100 value 81.317126 final value 81.317126 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.985266 iter 10 value 98.165400 iter 20 value 91.327856 iter 30 value 85.832112 iter 40 value 85.255122 iter 50 value 84.852269 iter 60 value 83.280186 iter 70 value 82.912843 iter 80 value 82.700104 iter 90 value 82.524708 iter 100 value 82.458838 final value 82.458838 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.607136 iter 10 value 94.038320 iter 20 value 91.823252 iter 30 value 86.381872 iter 40 value 85.526191 iter 50 value 85.209335 iter 60 value 83.745280 iter 70 value 82.705566 iter 80 value 82.350200 iter 90 value 82.191329 iter 100 value 82.038971 final value 82.038971 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 143.946033 iter 10 value 94.429228 iter 20 value 93.692717 iter 30 value 93.540474 iter 40 value 93.153612 iter 50 value 91.512469 iter 60 value 84.657782 iter 70 value 84.075316 iter 80 value 83.970258 iter 90 value 83.682573 iter 100 value 83.387869 final value 83.387869 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.388796 final value 94.054394 converged Fitting Repeat 2 # weights: 103 initial value 95.629638 final value 94.054585 converged Fitting Repeat 3 # weights: 103 initial value 99.235390 iter 10 value 94.008798 iter 20 value 93.744689 iter 30 value 93.246076 final value 93.245989 converged Fitting Repeat 4 # weights: 103 initial value 97.741472 final value 94.054755 converged Fitting Repeat 5 # weights: 103 initial value 105.819262 iter 10 value 94.054546 iter 20 value 94.052926 iter 20 value 94.052925 iter 20 value 94.052925 final value 94.052925 converged Fitting Repeat 1 # weights: 305 initial value 111.704183 iter 10 value 93.921003 final value 93.920878 converged Fitting Repeat 2 # weights: 305 initial value 96.421045 iter 10 value 86.871836 iter 20 value 86.801008 iter 30 value 86.279752 iter 40 value 84.862742 iter 50 value 84.774506 iter 60 value 84.773708 iter 70 value 84.771474 iter 80 value 84.770809 iter 80 value 84.770809 final value 84.770809 converged Fitting Repeat 3 # weights: 305 initial value 104.992344 iter 10 value 93.913192 iter 20 value 93.539689 iter 30 value 93.413471 iter 40 value 89.069121 iter 50 value 87.383276 iter 60 value 86.435814 iter 70 value 83.642428 iter 80 value 82.175192 iter 90 value 82.164589 iter 100 value 82.093097 final value 82.093097 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.574523 iter 10 value 94.057743 iter 20 value 93.786653 iter 30 value 93.534656 final value 93.531943 converged Fitting Repeat 5 # weights: 305 initial value 96.819176 iter 10 value 93.702229 iter 20 value 93.698005 final value 93.697479 converged Fitting Repeat 1 # weights: 507 initial value 96.985565 iter 10 value 90.247042 iter 20 value 83.973430 iter 30 value 83.671475 iter 40 value 83.595916 iter 50 value 83.535610 iter 60 value 83.518829 final value 83.512216 converged Fitting Repeat 2 # weights: 507 initial value 100.566518 iter 10 value 93.923985 iter 20 value 92.988300 final value 86.454631 converged Fitting Repeat 3 # weights: 507 initial value 97.119063 iter 10 value 94.061073 iter 20 value 94.052978 iter 30 value 91.520609 iter 40 value 84.916730 iter 50 value 81.822310 iter 60 value 80.577108 iter 70 value 80.485748 iter 80 value 80.482212 iter 90 value 80.443258 iter 100 value 79.725492 final value 79.725492 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.237796 iter 10 value 93.912666 iter 20 value 93.546413 iter 30 value 93.539608 iter 40 value 93.532008 iter 50 value 93.262712 iter 60 value 88.123446 iter 70 value 87.938120 iter 80 value 87.511259 iter 90 value 87.438930 final value 87.438847 converged Fitting Repeat 5 # weights: 507 initial value 118.204620 iter 10 value 93.783853 iter 20 value 93.489989 iter 30 value 93.485064 iter 40 value 93.476740 iter 50 value 92.622796 iter 60 value 87.279676 iter 70 value 84.966456 iter 80 value 84.937766 final value 84.937362 converged Fitting Repeat 1 # weights: 103 initial value 117.617830 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.462691 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 108.391357 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 97.770045 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 98.648531 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 111.409551 iter 10 value 91.212452 iter 20 value 86.888319 iter 30 value 86.888239 final value 86.888237 converged Fitting Repeat 2 # weights: 305 initial value 104.292237 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 105.672043 iter 10 value 93.974922 iter 10 value 93.974922 iter 10 value 93.974922 final value 93.974922 converged Fitting Repeat 4 # weights: 305 initial value 97.780486 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.775681 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.420471 iter 10 value 93.723339 final value 93.722225 converged Fitting Repeat 2 # weights: 507 initial value 102.847422 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 97.857061 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 97.485499 iter 10 value 93.944597 iter 10 value 93.944597 iter 10 value 93.944597 final value 93.944597 converged Fitting Repeat 5 # weights: 507 initial value 117.368678 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 102.074090 iter 10 value 94.051187 iter 20 value 86.236114 iter 30 value 85.500933 iter 40 value 84.554668 iter 50 value 83.141048 iter 60 value 83.000695 iter 70 value 82.815298 iter 80 value 82.814604 iter 80 value 82.814604 iter 80 value 82.814604 final value 82.814604 converged Fitting Repeat 2 # weights: 103 initial value 101.446785 iter 10 value 93.980019 iter 20 value 87.734082 iter 30 value 85.721794 iter 40 value 85.235765 iter 50 value 85.148058 iter 60 value 85.069887 iter 70 value 85.036866 iter 80 value 83.662402 iter 90 value 82.971246 iter 100 value 82.820061 final value 82.820061 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.063175 iter 10 value 93.937328 iter 20 value 93.776704 iter 30 value 86.241484 iter 40 value 85.659255 iter 50 value 85.644233 iter 60 value 85.239800 iter 70 value 85.128752 iter 80 value 83.772634 iter 90 value 82.916450 iter 100 value 82.837475 final value 82.837475 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.657680 iter 10 value 94.060413 iter 20 value 93.865447 iter 30 value 88.393857 iter 40 value 85.956551 iter 50 value 85.264852 iter 60 value 85.151623 iter 70 value 85.077659 iter 80 value 83.243791 iter 90 value 83.002321 iter 100 value 82.984906 final value 82.984906 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.531439 iter 10 value 93.909486 iter 20 value 93.733695 final value 93.705254 converged Fitting Repeat 1 # weights: 305 initial value 102.994456 iter 10 value 94.391340 iter 20 value 93.211642 iter 30 value 84.143976 iter 40 value 83.692405 iter 50 value 83.534522 iter 60 value 82.111973 iter 70 value 81.750855 iter 80 value 81.450741 iter 90 value 80.999949 iter 100 value 80.369866 final value 80.369866 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.902771 iter 10 value 93.635087 iter 20 value 87.799067 iter 30 value 86.026797 iter 40 value 83.490705 iter 50 value 82.727794 iter 60 value 82.668850 iter 70 value 82.503931 iter 80 value 81.030013 iter 90 value 80.777576 iter 100 value 80.408855 final value 80.408855 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.542303 iter 10 value 93.806208 iter 20 value 86.244956 iter 30 value 85.115060 iter 40 value 82.927865 iter 50 value 82.638346 iter 60 value 82.591171 iter 70 value 82.580121 iter 80 value 82.554863 iter 90 value 81.507513 iter 100 value 81.110186 final value 81.110186 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.190442 iter 10 value 94.827675 iter 20 value 94.016920 iter 30 value 88.102770 iter 40 value 84.013060 iter 50 value 82.850396 iter 60 value 82.742745 iter 70 value 82.666446 iter 80 value 82.603460 iter 90 value 82.597314 iter 100 value 82.583892 final value 82.583892 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 117.174171 iter 10 value 93.482974 iter 20 value 85.082614 iter 30 value 83.710815 iter 40 value 83.359302 iter 50 value 82.814722 iter 60 value 82.660475 iter 70 value 81.901525 iter 80 value 81.209700 iter 90 value 80.379390 iter 100 value 80.232833 final value 80.232833 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 129.190430 iter 10 value 93.805279 iter 20 value 84.630780 iter 30 value 82.471072 iter 40 value 81.224818 iter 50 value 80.694472 iter 60 value 80.227254 iter 70 value 79.625955 iter 80 value 79.396110 iter 90 value 79.294184 iter 100 value 79.277406 final value 79.277406 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.901651 iter 10 value 94.069359 iter 20 value 94.022942 iter 30 value 87.472365 iter 40 value 85.359293 iter 50 value 82.694538 iter 60 value 81.137401 iter 70 value 80.798647 iter 80 value 80.375961 iter 90 value 79.993942 iter 100 value 79.891211 final value 79.891211 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.299534 iter 10 value 94.060384 iter 20 value 91.241217 iter 30 value 90.961817 iter 40 value 90.618460 iter 50 value 87.296595 iter 60 value 86.061954 iter 70 value 82.914825 iter 80 value 82.269590 iter 90 value 81.952230 iter 100 value 81.934847 final value 81.934847 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.863941 iter 10 value 93.666901 iter 20 value 88.113342 iter 30 value 84.197039 iter 40 value 81.218521 iter 50 value 80.282877 iter 60 value 79.900014 iter 70 value 79.431470 iter 80 value 79.327971 iter 90 value 79.315575 iter 100 value 79.295804 final value 79.295804 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.502720 iter 10 value 97.681490 iter 20 value 87.881060 iter 30 value 85.012389 iter 40 value 84.337423 iter 50 value 83.299704 iter 60 value 82.642941 iter 70 value 80.260221 iter 80 value 79.641070 iter 90 value 79.380340 iter 100 value 79.348202 final value 79.348202 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.812550 final value 94.054690 converged Fitting Repeat 2 # weights: 103 initial value 95.510681 final value 94.054433 converged Fitting Repeat 3 # weights: 103 initial value 98.293426 final value 94.054771 converged Fitting Repeat 4 # weights: 103 initial value 107.521409 final value 94.054463 converged Fitting Repeat 5 # weights: 103 initial value 95.530531 final value 94.054906 converged Fitting Repeat 1 # weights: 305 initial value 95.270279 iter 10 value 94.013993 iter 20 value 93.769327 iter 30 value 93.661803 iter 40 value 93.632319 final value 93.632263 converged Fitting Repeat 2 # weights: 305 initial value 96.005462 iter 10 value 94.057610 iter 20 value 94.053030 final value 94.053017 converged Fitting Repeat 3 # weights: 305 initial value 106.169126 iter 10 value 94.057704 iter 20 value 94.008335 iter 30 value 86.810513 iter 40 value 86.372609 iter 50 value 85.358089 iter 60 value 85.062957 final value 85.062687 converged Fitting Repeat 4 # weights: 305 initial value 99.964823 iter 10 value 94.057691 iter 20 value 94.047653 iter 30 value 93.739467 iter 40 value 86.286789 iter 50 value 86.277955 iter 60 value 86.268074 iter 70 value 86.121153 iter 80 value 85.361402 iter 90 value 85.239148 iter 100 value 85.233730 final value 85.233730 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.755788 iter 10 value 94.014679 iter 20 value 93.759050 iter 30 value 87.405408 iter 40 value 82.492973 iter 50 value 81.399257 iter 60 value 81.394182 iter 70 value 81.241167 iter 80 value 81.225639 final value 81.225549 converged Fitting Repeat 1 # weights: 507 initial value 111.678151 iter 10 value 90.959068 iter 20 value 86.219986 iter 30 value 83.306246 iter 40 value 83.241230 iter 50 value 83.236184 iter 60 value 83.222358 iter 70 value 82.682181 iter 80 value 82.680722 iter 90 value 82.655961 iter 100 value 82.615984 final value 82.615984 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.910258 iter 10 value 86.772397 iter 20 value 84.412068 iter 30 value 84.409374 iter 40 value 84.331430 iter 50 value 84.329882 iter 60 value 84.329602 iter 70 value 84.173959 iter 80 value 83.169666 iter 90 value 82.981064 iter 100 value 82.938660 final value 82.938660 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.059163 iter 10 value 94.059161 iter 20 value 93.918338 iter 30 value 88.757231 iter 40 value 87.172356 iter 50 value 87.062351 iter 60 value 87.048147 iter 70 value 87.047531 iter 80 value 87.045817 iter 90 value 87.044098 iter 100 value 87.043382 final value 87.043382 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.354049 iter 10 value 93.950535 iter 20 value 93.947771 iter 30 value 93.688988 iter 40 value 87.845505 iter 50 value 84.586925 iter 60 value 84.467668 iter 70 value 84.125088 iter 80 value 84.112951 iter 90 value 83.985105 iter 100 value 83.517041 final value 83.517041 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 136.904710 iter 10 value 93.670322 iter 20 value 93.631342 iter 30 value 93.625944 iter 40 value 86.894703 iter 50 value 85.490612 iter 60 value 84.658782 iter 70 value 84.291428 final value 84.143935 converged Fitting Repeat 1 # weights: 103 initial value 108.544271 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.013513 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.895669 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 115.868060 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.707235 final value 94.428839 converged Fitting Repeat 1 # weights: 305 initial value 98.503017 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.177120 iter 10 value 94.364445 iter 20 value 94.292739 iter 30 value 94.292219 final value 94.292214 converged Fitting Repeat 3 # weights: 305 initial value 101.063478 final value 94.354396 converged Fitting Repeat 4 # weights: 305 initial value 100.830659 iter 10 value 94.354719 final value 94.354396 converged Fitting Repeat 5 # weights: 305 initial value 100.314917 iter 10 value 94.355175 final value 94.350744 converged Fitting Repeat 1 # weights: 507 initial value 101.333519 iter 10 value 87.808007 iter 20 value 85.210433 iter 30 value 84.247849 iter 40 value 84.229834 final value 84.228981 converged Fitting Repeat 2 # weights: 507 initial value 101.504505 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 115.271909 final value 94.354396 converged Fitting Repeat 4 # weights: 507 initial value 120.301018 iter 10 value 94.407026 iter 20 value 94.356429 final value 94.350744 converged Fitting Repeat 5 # weights: 507 initial value 100.405938 final value 94.350744 converged Fitting Repeat 1 # weights: 103 initial value 102.837287 iter 10 value 91.846483 iter 20 value 83.069897 iter 30 value 82.827865 iter 40 value 82.203694 iter 50 value 82.130876 final value 82.130821 converged Fitting Repeat 2 # weights: 103 initial value 98.774262 iter 10 value 94.445963 iter 20 value 87.222802 iter 30 value 86.309125 iter 40 value 82.939152 iter 50 value 82.475256 iter 60 value 82.281611 iter 70 value 82.133312 iter 80 value 82.130894 final value 82.130881 converged Fitting Repeat 3 # weights: 103 initial value 119.185076 iter 10 value 94.466506 iter 20 value 91.473291 iter 30 value 87.003052 iter 40 value 83.247857 iter 50 value 82.851619 iter 60 value 82.833815 iter 70 value 82.827793 final value 82.827555 converged Fitting Repeat 4 # weights: 103 initial value 96.172434 iter 10 value 94.456949 iter 20 value 94.053627 iter 30 value 89.259712 iter 40 value 88.971945 iter 50 value 86.289702 iter 60 value 86.137924 iter 70 value 82.502802 iter 80 value 82.143739 iter 90 value 82.130881 final value 82.130822 converged Fitting Repeat 5 # weights: 103 initial value 101.764259 iter 10 value 94.486415 iter 20 value 93.763219 iter 30 value 84.662807 iter 40 value 82.671479 iter 50 value 82.134841 iter 60 value 82.130873 final value 82.130821 converged Fitting Repeat 1 # weights: 305 initial value 121.614377 iter 10 value 94.448337 iter 20 value 91.199326 iter 30 value 83.365231 iter 40 value 82.436505 iter 50 value 81.565463 iter 60 value 81.463845 iter 70 value 80.875992 iter 80 value 80.684122 iter 90 value 80.650788 iter 100 value 80.586847 final value 80.586847 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.408071 iter 10 value 94.494255 iter 20 value 88.661708 iter 30 value 84.068778 iter 40 value 83.789329 iter 50 value 81.650861 iter 60 value 81.304673 iter 70 value 81.067177 iter 80 value 80.932095 iter 90 value 80.508229 iter 100 value 80.281844 final value 80.281844 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.299948 iter 10 value 94.337949 iter 20 value 87.253951 iter 30 value 85.753193 iter 40 value 85.078845 iter 50 value 82.347293 iter 60 value 80.864302 iter 70 value 80.018836 iter 80 value 79.658761 iter 90 value 79.478489 iter 100 value 78.782241 final value 78.782241 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.778572 iter 10 value 94.455305 iter 20 value 91.385024 iter 30 value 88.584873 iter 40 value 86.732174 iter 50 value 85.465960 iter 60 value 82.012059 iter 70 value 81.274574 iter 80 value 79.665991 iter 90 value 78.944252 iter 100 value 78.785683 final value 78.785683 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.637664 iter 10 value 94.464300 iter 20 value 85.864384 iter 30 value 83.958463 iter 40 value 81.948052 iter 50 value 81.844381 iter 60 value 81.727897 iter 70 value 80.427814 iter 80 value 78.842206 iter 90 value 78.403242 iter 100 value 78.322145 final value 78.322145 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.064760 iter 10 value 94.379626 iter 20 value 87.137126 iter 30 value 84.214392 iter 40 value 83.412403 iter 50 value 81.795346 iter 60 value 81.739984 iter 70 value 81.611931 iter 80 value 80.591035 iter 90 value 78.968998 iter 100 value 78.425430 final value 78.425430 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 127.616250 iter 10 value 93.921987 iter 20 value 86.795160 iter 30 value 84.748880 iter 40 value 82.351910 iter 50 value 81.223123 iter 60 value 80.637716 iter 70 value 79.528459 iter 80 value 78.789751 iter 90 value 78.432748 iter 100 value 78.248163 final value 78.248163 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.611972 iter 10 value 93.787586 iter 20 value 86.720236 iter 30 value 83.069428 iter 40 value 82.856348 iter 50 value 81.928971 iter 60 value 79.281039 iter 70 value 78.866215 iter 80 value 78.754688 iter 90 value 78.683939 iter 100 value 78.456487 final value 78.456487 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.970063 iter 10 value 89.205221 iter 20 value 82.790533 iter 30 value 82.079219 iter 40 value 81.471839 iter 50 value 80.133992 iter 60 value 79.025912 iter 70 value 78.496631 iter 80 value 78.106578 iter 90 value 78.015219 iter 100 value 77.943420 final value 77.943420 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 117.690490 iter 10 value 94.305177 iter 20 value 85.509336 iter 30 value 84.666043 iter 40 value 84.479848 iter 50 value 84.147303 iter 60 value 83.817636 iter 70 value 82.904973 iter 80 value 81.182513 iter 90 value 79.423327 iter 100 value 78.816618 final value 78.816618 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.356928 final value 94.485690 converged Fitting Repeat 2 # weights: 103 initial value 94.961753 final value 94.485872 converged Fitting Repeat 3 # weights: 103 initial value 98.719401 final value 94.486064 converged Fitting Repeat 4 # weights: 103 initial value 99.167519 final value 94.356146 converged Fitting Repeat 5 # weights: 103 initial value 97.826035 final value 94.485977 converged Fitting Repeat 1 # weights: 305 initial value 95.483722 iter 10 value 94.489076 iter 20 value 94.449048 iter 30 value 94.380382 final value 94.354663 converged Fitting Repeat 2 # weights: 305 initial value 100.522005 iter 10 value 94.358915 iter 20 value 94.354517 iter 30 value 92.535946 iter 40 value 89.396697 iter 50 value 89.395345 iter 60 value 87.312525 iter 70 value 85.925323 iter 80 value 85.918465 iter 80 value 85.918464 iter 80 value 85.918464 final value 85.918464 converged Fitting Repeat 3 # weights: 305 initial value 99.528944 iter 10 value 94.359227 iter 20 value 94.352251 iter 30 value 94.306229 iter 40 value 93.383181 iter 50 value 90.041918 iter 60 value 88.615623 iter 70 value 86.019319 iter 80 value 86.000043 iter 90 value 84.880864 iter 100 value 84.633610 final value 84.633610 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.562162 iter 10 value 94.359351 iter 20 value 94.354526 iter 30 value 92.311083 iter 40 value 91.156285 iter 50 value 80.825653 iter 60 value 80.760662 iter 70 value 80.759223 iter 80 value 80.758675 iter 90 value 80.758269 iter 100 value 80.757622 final value 80.757622 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 120.191123 iter 10 value 94.358764 iter 20 value 94.050150 iter 30 value 85.653515 iter 40 value 85.651068 iter 50 value 83.273470 iter 60 value 83.266723 iter 70 value 83.092658 iter 80 value 83.061914 iter 90 value 83.049825 iter 100 value 81.980728 final value 81.980728 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.229440 iter 10 value 85.335698 iter 20 value 81.758710 iter 30 value 81.756013 iter 40 value 80.840255 iter 50 value 80.384401 iter 60 value 80.383578 iter 70 value 80.261978 iter 80 value 78.560465 iter 90 value 77.213513 iter 100 value 76.721297 final value 76.721297 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.155513 iter 10 value 94.493114 iter 20 value 94.484250 iter 30 value 89.663127 iter 40 value 85.638321 iter 50 value 85.636858 iter 60 value 85.024982 iter 70 value 83.786802 iter 80 value 80.336341 iter 90 value 80.248824 iter 90 value 80.248823 final value 80.248812 converged Fitting Repeat 3 # weights: 507 initial value 97.587973 iter 10 value 94.492209 iter 20 value 94.457413 iter 30 value 83.289307 iter 40 value 81.563374 iter 50 value 81.494960 iter 60 value 81.441362 iter 70 value 81.243691 iter 80 value 77.574448 iter 90 value 76.898773 iter 100 value 76.868895 final value 76.868895 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 97.755331 iter 10 value 94.362916 iter 20 value 94.353441 iter 30 value 93.492977 iter 40 value 92.155516 iter 50 value 85.649298 iter 60 value 84.985784 iter 70 value 83.980949 final value 83.980601 converged Fitting Repeat 5 # weights: 507 initial value 112.064726 iter 10 value 94.416229 iter 20 value 94.403912 iter 30 value 81.746682 iter 40 value 81.491912 iter 50 value 81.491485 iter 60 value 81.489873 iter 70 value 80.102694 iter 80 value 78.742695 iter 90 value 77.803449 iter 100 value 77.651611 final value 77.651611 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.648929 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.066108 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.287464 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 94.824192 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.821373 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.713182 final value 94.326053 converged Fitting Repeat 2 # weights: 305 initial value 111.125662 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 95.840087 final value 94.046703 converged Fitting Repeat 4 # weights: 305 initial value 95.704091 final value 94.461207 converged Fitting Repeat 5 # weights: 305 initial value 95.027235 iter 10 value 92.310000 iter 20 value 89.758886 final value 89.721364 converged Fitting Repeat 1 # weights: 507 initial value 113.382195 iter 10 value 93.665236 final value 93.640752 converged Fitting Repeat 2 # weights: 507 initial value 108.867864 iter 10 value 93.372599 iter 10 value 93.372599 iter 10 value 93.372599 final value 93.372599 converged Fitting Repeat 3 # weights: 507 initial value 104.943911 iter 10 value 93.735295 iter 20 value 93.233023 iter 30 value 93.022423 final value 93.022222 converged Fitting Repeat 4 # weights: 507 initial value 108.480605 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 121.180718 final value 94.409639 converged Fitting Repeat 1 # weights: 103 initial value 97.434970 iter 10 value 94.464267 iter 20 value 84.655451 iter 30 value 82.529172 iter 40 value 81.606577 iter 50 value 80.849709 iter 60 value 80.774359 final value 80.774304 converged Fitting Repeat 2 # weights: 103 initial value 96.816051 iter 10 value 94.490813 iter 20 value 93.358736 iter 30 value 84.684898 iter 40 value 83.353067 iter 50 value 80.985523 iter 60 value 80.721797 iter 70 value 79.489538 iter 80 value 79.474302 iter 80 value 79.474302 iter 80 value 79.474302 final value 79.474302 converged Fitting Repeat 3 # weights: 103 initial value 98.725732 iter 10 value 93.437160 iter 20 value 85.607048 iter 30 value 84.077992 iter 40 value 81.703846 iter 50 value 80.712372 iter 60 value 79.969009 iter 70 value 79.657858 iter 80 value 79.525296 final value 79.525287 converged Fitting Repeat 4 # weights: 103 initial value 101.732495 iter 10 value 94.465560 iter 20 value 92.602312 iter 30 value 91.960402 iter 40 value 91.596696 iter 50 value 91.533345 iter 60 value 91.386933 iter 70 value 91.254054 iter 80 value 91.106709 final value 91.106597 converged Fitting Repeat 5 # weights: 103 initial value 98.897154 iter 10 value 94.593388 iter 20 value 94.452834 iter 30 value 93.327087 iter 40 value 88.147182 iter 50 value 86.698283 iter 60 value 83.082206 iter 70 value 80.859061 iter 80 value 80.775380 iter 90 value 80.774305 final value 80.774304 converged Fitting Repeat 1 # weights: 305 initial value 128.858631 iter 10 value 94.473458 iter 20 value 93.611109 iter 30 value 88.689138 iter 40 value 86.272530 iter 50 value 83.641277 iter 60 value 82.638024 iter 70 value 81.214040 iter 80 value 80.749295 iter 90 value 80.281365 iter 100 value 80.049643 final value 80.049643 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.521026 iter 10 value 94.458837 iter 20 value 94.012198 iter 30 value 91.568062 iter 40 value 84.192325 iter 50 value 80.055777 iter 60 value 79.114777 iter 70 value 78.866648 iter 80 value 78.572970 iter 90 value 78.468382 iter 100 value 78.457703 final value 78.457703 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.237393 iter 10 value 94.402897 iter 20 value 85.775301 iter 30 value 82.413581 iter 40 value 79.528309 iter 50 value 79.131599 iter 60 value 78.623079 iter 70 value 78.356650 iter 80 value 78.169625 iter 90 value 78.144824 iter 100 value 78.045252 final value 78.045252 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.052926 iter 10 value 93.021716 iter 20 value 91.008797 iter 30 value 84.280565 iter 40 value 83.119361 iter 50 value 82.200356 iter 60 value 80.120490 iter 70 value 79.730336 iter 80 value 78.717678 iter 90 value 78.422855 iter 100 value 78.368391 final value 78.368391 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 118.814554 iter 10 value 94.700256 iter 20 value 94.056682 iter 30 value 88.298548 iter 40 value 87.782537 iter 50 value 84.216019 iter 60 value 82.735881 iter 70 value 80.607822 iter 80 value 78.544466 iter 90 value 78.378873 iter 100 value 78.301501 final value 78.301501 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.581263 iter 10 value 94.553604 iter 20 value 93.954556 iter 30 value 85.514935 iter 40 value 82.337446 iter 50 value 80.825800 iter 60 value 80.257220 iter 70 value 79.820047 iter 80 value 79.771310 iter 90 value 79.731510 iter 100 value 79.603203 final value 79.603203 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.968212 iter 10 value 96.778894 iter 20 value 95.204206 iter 30 value 88.101924 iter 40 value 83.120923 iter 50 value 81.410246 iter 60 value 79.632828 iter 70 value 79.057659 iter 80 value 78.998426 iter 90 value 78.851321 iter 100 value 78.520352 final value 78.520352 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.943064 iter 10 value 94.841377 iter 20 value 93.761409 iter 30 value 92.050397 iter 40 value 82.919880 iter 50 value 81.201693 iter 60 value 80.656119 iter 70 value 80.524018 iter 80 value 80.053755 iter 90 value 79.547926 iter 100 value 79.331445 final value 79.331445 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.621084 iter 10 value 94.545605 iter 20 value 87.636711 iter 30 value 85.085489 iter 40 value 83.008185 iter 50 value 79.757854 iter 60 value 79.193849 iter 70 value 78.850236 iter 80 value 78.506506 iter 90 value 78.220872 iter 100 value 78.125482 final value 78.125482 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 122.210362 iter 10 value 91.550288 iter 20 value 83.449821 iter 30 value 79.263825 iter 40 value 78.509562 iter 50 value 78.220449 iter 60 value 78.141257 iter 70 value 78.122392 iter 80 value 78.117932 iter 90 value 78.104374 iter 100 value 78.007261 final value 78.007261 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.218353 iter 10 value 93.774861 iter 20 value 93.365475 iter 30 value 85.614274 iter 40 value 85.233727 iter 50 value 85.207208 iter 60 value 85.196374 final value 85.196356 converged Fitting Repeat 2 # weights: 103 initial value 95.095271 iter 10 value 94.485753 iter 20 value 94.484224 iter 30 value 94.454899 iter 40 value 83.485249 iter 50 value 82.712496 iter 60 value 80.686231 iter 70 value 80.682593 final value 80.682554 converged Fitting Repeat 3 # weights: 103 initial value 100.871052 iter 10 value 94.485676 iter 20 value 94.484211 iter 30 value 94.403988 iter 40 value 91.935092 iter 50 value 91.931557 iter 60 value 91.930984 iter 60 value 91.930984 iter 60 value 91.930984 final value 91.930984 converged Fitting Repeat 4 # weights: 103 initial value 102.776347 final value 94.485993 converged Fitting Repeat 5 # weights: 103 initial value 98.943977 final value 94.462920 converged Fitting Repeat 1 # weights: 305 initial value 106.579829 iter 10 value 94.489041 iter 20 value 94.484224 iter 30 value 93.774779 final value 93.773494 converged Fitting Repeat 2 # weights: 305 initial value 106.346178 iter 10 value 94.487547 iter 20 value 94.084474 iter 30 value 91.839900 iter 40 value 86.371684 iter 50 value 85.598837 iter 60 value 85.382393 iter 70 value 82.887175 iter 80 value 82.872366 iter 90 value 81.369325 iter 100 value 80.971649 final value 80.971649 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.669355 iter 10 value 94.466182 iter 20 value 94.339726 iter 30 value 93.773774 final value 93.773766 converged Fitting Repeat 4 # weights: 305 initial value 98.463151 iter 10 value 89.071251 iter 20 value 87.918122 iter 30 value 86.358848 iter 40 value 86.312945 iter 50 value 86.309175 iter 60 value 86.303858 iter 70 value 85.134342 iter 80 value 84.785074 final value 84.785036 converged Fitting Repeat 5 # weights: 305 initial value 99.954098 iter 10 value 94.488897 iter 20 value 94.484045 iter 30 value 93.774265 final value 93.773709 converged Fitting Repeat 1 # weights: 507 initial value 97.405496 iter 10 value 90.970728 iter 20 value 86.960429 iter 30 value 85.892955 iter 40 value 85.759786 iter 50 value 80.924979 iter 60 value 80.375291 iter 70 value 80.298840 iter 80 value 80.298109 iter 90 value 80.117888 iter 100 value 79.108192 final value 79.108192 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 99.712386 iter 10 value 93.935712 iter 20 value 93.857623 iter 30 value 93.038439 iter 40 value 91.047094 iter 50 value 90.945036 iter 60 value 89.961817 iter 70 value 85.866862 iter 80 value 85.856749 final value 85.846096 converged Fitting Repeat 3 # weights: 507 initial value 98.298360 iter 10 value 94.195224 iter 20 value 92.168692 iter 30 value 85.853808 iter 40 value 83.662786 iter 50 value 82.373378 iter 60 value 82.354834 iter 70 value 82.353015 final value 82.351053 converged Fitting Repeat 4 # weights: 507 initial value 102.917955 iter 10 value 94.492810 iter 20 value 94.462476 iter 30 value 89.010775 final value 89.009895 converged Fitting Repeat 5 # weights: 507 initial value 104.969890 iter 10 value 93.508881 iter 20 value 93.277284 iter 30 value 93.221714 iter 40 value 92.658157 iter 50 value 92.569866 iter 60 value 92.531203 iter 70 value 92.530935 iter 80 value 92.529795 iter 90 value 92.529377 iter 90 value 92.529377 final value 92.529377 converged Fitting Repeat 1 # weights: 507 initial value 148.670255 iter 10 value 117.427842 iter 20 value 109.723413 iter 30 value 109.270134 iter 40 value 104.666915 iter 50 value 103.775414 iter 60 value 103.183875 iter 70 value 101.999468 iter 80 value 101.390759 iter 90 value 101.028321 iter 100 value 100.934698 final value 100.934698 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 138.134982 iter 10 value 118.936147 iter 20 value 114.476541 iter 30 value 108.959669 iter 40 value 106.975059 iter 50 value 105.917690 iter 60 value 105.036851 iter 70 value 104.718308 iter 80 value 104.622525 iter 90 value 104.246839 iter 100 value 103.351465 final value 103.351465 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 144.936182 iter 10 value 118.681487 iter 20 value 116.546320 iter 30 value 107.544296 iter 40 value 107.245897 iter 50 value 106.629601 iter 60 value 105.729408 iter 70 value 102.175289 iter 80 value 101.904145 iter 90 value 101.526837 iter 100 value 101.084566 final value 101.084566 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 152.019820 iter 10 value 117.664873 iter 20 value 111.764913 iter 30 value 104.297071 iter 40 value 103.123974 iter 50 value 102.709305 iter 60 value 102.376404 iter 70 value 101.762251 iter 80 value 101.510264 iter 90 value 101.500761 iter 100 value 101.463765 final value 101.463765 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 137.096370 iter 10 value 118.020070 iter 20 value 117.824038 iter 30 value 117.673554 iter 40 value 109.002293 iter 50 value 107.603524 iter 60 value 106.539375 iter 70 value 105.756615 iter 80 value 103.933711 iter 90 value 101.587719 iter 100 value 101.307660 final value 101.307660 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Feb 3 21:12:52 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 39.552 1.589 115.716
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.864 | 1.682 | 35.839 | |
FreqInteractors | 0.275 | 0.014 | 0.293 | |
calculateAAC | 0.038 | 0.006 | 0.044 | |
calculateAutocor | 0.357 | 0.057 | 0.419 | |
calculateCTDC | 0.080 | 0.006 | 0.087 | |
calculateCTDD | 0.565 | 0.028 | 0.596 | |
calculateCTDT | 0.241 | 0.011 | 0.254 | |
calculateCTriad | 0.370 | 0.029 | 0.401 | |
calculateDC | 0.089 | 0.009 | 0.098 | |
calculateF | 0.335 | 0.009 | 0.345 | |
calculateKSAAP | 0.100 | 0.012 | 0.112 | |
calculateQD_Sm | 1.799 | 0.107 | 1.923 | |
calculateTC | 1.636 | 0.154 | 1.803 | |
calculateTC_Sm | 0.298 | 0.022 | 0.324 | |
corr_plot | 33.300 | 1.661 | 35.186 | |
enrichfindP | 0.467 | 0.056 | 7.970 | |
enrichfind_hp | 0.065 | 0.024 | 0.955 | |
enrichplot | 0.371 | 0.010 | 0.384 | |
filter_missing_values | 0.001 | 0.001 | 0.001 | |
getFASTA | 0.062 | 0.011 | 3.401 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0.000 | 0.001 | 0.000 | |
impute_missing_data | 0.002 | 0.001 | 0.002 | |
plotPPI | 0.070 | 0.004 | 0.074 | |
pred_ensembel | 13.231 | 0.428 | 11.835 | |
var_imp | 33.456 | 1.734 | 35.473 | |