Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-02-06 11:41 -0500 (Thu, 06 Feb 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" | 4719 |
palomino7 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2025-01-21 r87610 ucrt) -- "Unsuffered Consequences" | 4480 |
lconway | macOS 12.7.1 Monterey | x86_64 | R Under development (unstable) (2025-01-22 r87618) -- "Unsuffered Consequences" | 4491 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" | 4444 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 981/2295 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.13.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.13.0 |
Command: E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz |
StartedAt: 2025-02-06 02:30:30 -0500 (Thu, 06 Feb 2025) |
EndedAt: 2025-02-06 02:37:04 -0500 (Thu, 06 Feb 2025) |
EllapsedTime: 393.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck' * using R Under development (unstable) (2025-01-21 r87610 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.13.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 35.16 1.89 37.07 corr_plot 34.47 1.53 36.04 var_imp 33.94 0.98 34.93 pred_ensembel 13.24 0.33 12.07 enrichfindP 0.78 0.09 12.74 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'E:/biocbuild/bbs-3.21-bioc/R/library' * installing *source* package 'HPiP' ... ** this is package 'HPiP' version '1.13.0' ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-01-21 r87610 ucrt) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 103.194928 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.200898 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.562231 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.192370 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.051009 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 136.717717 iter 10 value 94.466876 final value 94.466823 converged Fitting Repeat 2 # weights: 305 initial value 116.980847 final value 94.484210 converged Fitting Repeat 3 # weights: 305 initial value 110.694242 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 99.689658 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.037355 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.961660 final value 94.480513 converged Fitting Repeat 2 # weights: 507 initial value 97.376068 final value 94.466823 converged Fitting Repeat 3 # weights: 507 initial value 105.099013 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 126.280532 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 111.816849 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 114.028602 iter 10 value 94.412789 iter 20 value 90.180446 iter 30 value 87.534060 iter 40 value 87.023871 iter 50 value 86.772693 iter 60 value 85.464560 iter 70 value 85.075757 iter 80 value 84.936165 iter 90 value 84.829850 iter 100 value 84.775660 final value 84.775660 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.357537 iter 10 value 94.441460 iter 20 value 94.197132 iter 30 value 93.552851 iter 40 value 86.355258 iter 50 value 85.210534 iter 60 value 84.898071 iter 70 value 84.667442 iter 80 value 84.545894 iter 90 value 84.467295 iter 100 value 84.265263 final value 84.265263 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 106.722140 iter 10 value 94.487874 iter 20 value 94.346918 iter 30 value 90.769991 iter 40 value 89.861594 iter 50 value 86.774962 iter 60 value 85.733729 iter 70 value 85.634553 iter 80 value 85.619304 iter 90 value 85.581416 iter 100 value 85.156905 final value 85.156905 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.876608 iter 10 value 94.488512 iter 20 value 92.307368 iter 30 value 91.090540 iter 40 value 90.454123 iter 50 value 85.982003 iter 60 value 85.449786 iter 70 value 84.989857 iter 80 value 84.828996 iter 90 value 84.776439 final value 84.774199 converged Fitting Repeat 5 # weights: 103 initial value 100.674479 iter 10 value 94.145654 iter 20 value 87.024463 iter 30 value 86.219543 iter 40 value 86.047717 iter 50 value 85.868524 iter 60 value 85.207080 iter 70 value 84.797157 iter 80 value 84.774201 final value 84.774199 converged Fitting Repeat 1 # weights: 305 initial value 100.289716 iter 10 value 89.158685 iter 20 value 86.518623 iter 30 value 86.022324 iter 40 value 85.471379 iter 50 value 84.919165 iter 60 value 84.364429 iter 70 value 83.727036 iter 80 value 83.218670 iter 90 value 83.094962 iter 100 value 83.092769 final value 83.092769 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.947865 iter 10 value 94.409009 iter 20 value 87.914856 iter 30 value 87.302152 iter 40 value 85.635186 iter 50 value 85.006897 iter 60 value 84.349759 iter 70 value 83.654594 iter 80 value 83.461837 iter 90 value 83.225433 iter 100 value 83.101758 final value 83.101758 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.371733 iter 10 value 94.489785 iter 20 value 93.389984 iter 30 value 86.177859 iter 40 value 85.299134 iter 50 value 84.354970 iter 60 value 83.906332 iter 70 value 82.852600 iter 80 value 82.529128 iter 90 value 82.486434 iter 100 value 82.460915 final value 82.460915 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.152259 iter 10 value 94.415594 iter 20 value 93.326743 iter 30 value 90.092961 iter 40 value 88.156708 iter 50 value 86.734275 iter 60 value 84.822961 iter 70 value 84.174192 iter 80 value 83.611169 iter 90 value 83.026944 iter 100 value 82.845283 final value 82.845283 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.166712 iter 10 value 94.493419 iter 20 value 92.656680 iter 30 value 90.666613 iter 40 value 84.905537 iter 50 value 84.287450 iter 60 value 83.365719 iter 70 value 83.134421 iter 80 value 82.798737 iter 90 value 82.657551 iter 100 value 82.463027 final value 82.463027 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.515312 iter 10 value 94.673263 iter 20 value 88.486071 iter 30 value 86.441039 iter 40 value 85.426162 iter 50 value 84.804010 iter 60 value 84.425762 iter 70 value 84.314215 iter 80 value 84.167124 iter 90 value 84.035762 iter 100 value 83.147130 final value 83.147130 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.814482 iter 10 value 94.567126 iter 20 value 93.256707 iter 30 value 88.283806 iter 40 value 85.822825 iter 50 value 85.002731 iter 60 value 83.888693 iter 70 value 83.278688 iter 80 value 82.760194 iter 90 value 82.540363 iter 100 value 82.441456 final value 82.441456 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.897717 iter 10 value 94.582888 iter 20 value 93.322961 iter 30 value 90.314649 iter 40 value 88.368404 iter 50 value 87.472263 iter 60 value 86.712387 iter 70 value 85.530027 iter 80 value 84.185390 iter 90 value 83.706223 iter 100 value 83.476549 final value 83.476549 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.366742 iter 10 value 87.862324 iter 20 value 86.058495 iter 30 value 85.153631 iter 40 value 84.050399 iter 50 value 82.961252 iter 60 value 82.357710 iter 70 value 82.256234 iter 80 value 82.216806 iter 90 value 82.121718 iter 100 value 82.075698 final value 82.075698 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.508220 iter 10 value 94.340743 iter 20 value 88.256497 iter 30 value 86.917169 iter 40 value 86.081414 iter 50 value 84.464846 iter 60 value 83.091780 iter 70 value 82.722499 iter 80 value 82.594684 iter 90 value 82.421950 iter 100 value 82.374480 final value 82.374480 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.795704 iter 10 value 94.468364 final value 94.466844 converged Fitting Repeat 2 # weights: 103 initial value 108.287543 final value 94.485776 converged Fitting Repeat 3 # weights: 103 initial value 111.399516 final value 94.486064 converged Fitting Repeat 4 # weights: 103 initial value 101.495826 final value 94.485721 converged Fitting Repeat 5 # weights: 103 initial value 98.669898 final value 94.485651 converged Fitting Repeat 1 # weights: 305 initial value 103.101472 iter 10 value 94.489377 iter 20 value 94.374949 iter 30 value 89.420749 iter 40 value 87.445289 iter 50 value 87.156218 iter 60 value 87.072296 iter 70 value 87.037968 final value 87.034164 converged Fitting Repeat 2 # weights: 305 initial value 105.807038 iter 10 value 94.488461 iter 20 value 94.484179 iter 30 value 88.158198 iter 40 value 86.452716 iter 50 value 84.826831 iter 60 value 84.730395 iter 70 value 84.712207 final value 84.712203 converged Fitting Repeat 3 # weights: 305 initial value 125.079079 iter 10 value 94.489593 iter 20 value 94.429892 iter 30 value 94.038621 iter 40 value 92.464102 iter 50 value 92.402522 iter 60 value 92.378831 iter 70 value 92.374569 iter 80 value 91.287356 iter 90 value 91.285825 final value 91.285823 converged Fitting Repeat 4 # weights: 305 initial value 96.706796 iter 10 value 94.489033 iter 20 value 94.471191 iter 30 value 92.678341 iter 40 value 88.228248 iter 50 value 88.223000 iter 60 value 88.218109 iter 70 value 88.030326 iter 80 value 85.224669 iter 90 value 84.616689 iter 100 value 83.874768 final value 83.874768 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 95.951532 iter 10 value 94.487428 iter 20 value 93.142371 iter 30 value 93.136643 iter 40 value 89.009091 iter 50 value 88.349846 iter 60 value 88.338705 iter 70 value 88.293284 iter 80 value 88.291669 iter 90 value 88.251454 iter 100 value 87.905853 final value 87.905853 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.558580 iter 10 value 87.403356 iter 20 value 85.697575 iter 30 value 85.661842 final value 85.660817 converged Fitting Repeat 2 # weights: 507 initial value 98.241448 iter 10 value 89.245957 iter 20 value 88.027389 iter 30 value 87.858658 iter 40 value 87.813172 final value 87.812321 converged Fitting Repeat 3 # weights: 507 initial value 120.071580 iter 10 value 95.110317 iter 20 value 88.945883 iter 30 value 88.927779 iter 40 value 87.780834 iter 50 value 86.607096 iter 60 value 86.429772 iter 70 value 86.402459 iter 80 value 86.370017 iter 90 value 86.361152 iter 100 value 86.358608 final value 86.358608 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 124.976423 iter 10 value 89.782472 iter 20 value 87.786292 iter 30 value 87.779899 iter 40 value 87.711478 iter 50 value 87.710743 iter 60 value 85.915105 iter 70 value 85.504745 iter 80 value 85.502808 iter 90 value 84.982693 iter 100 value 84.969607 final value 84.969607 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.071139 iter 10 value 94.475454 iter 20 value 94.342186 iter 30 value 85.657631 iter 40 value 85.651154 iter 50 value 85.650594 iter 60 value 85.276875 iter 70 value 84.619239 iter 80 value 84.561323 iter 90 value 84.183922 iter 100 value 83.778705 final value 83.778705 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.633342 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.679719 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.897802 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.489924 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 102.477852 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.258548 iter 10 value 94.466985 final value 94.466823 converged Fitting Repeat 2 # weights: 305 initial value 101.111214 final value 94.466823 converged Fitting Repeat 3 # weights: 305 initial value 98.638343 final value 94.461538 converged Fitting Repeat 4 # weights: 305 initial value 94.941694 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 106.043561 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 106.804544 iter 10 value 94.195523 iter 20 value 92.980755 iter 30 value 91.651177 final value 91.651099 converged Fitting Repeat 2 # weights: 507 initial value 102.709116 final value 94.484210 converged Fitting Repeat 3 # weights: 507 initial value 109.893605 iter 10 value 94.487218 iter 20 value 94.484217 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 138.656673 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 101.175720 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 96.999051 iter 10 value 94.449684 iter 20 value 90.344025 iter 30 value 84.805850 iter 40 value 83.530959 iter 50 value 82.019665 iter 60 value 81.544667 iter 70 value 81.436366 final value 81.433048 converged Fitting Repeat 2 # weights: 103 initial value 98.680174 iter 10 value 94.430659 iter 20 value 91.570058 iter 30 value 90.487593 iter 40 value 86.851575 iter 50 value 85.734962 iter 60 value 85.460368 iter 70 value 85.328125 iter 80 value 85.306929 final value 85.303008 converged Fitting Repeat 3 # weights: 103 initial value 98.759980 iter 10 value 93.790313 iter 20 value 87.671006 iter 30 value 86.738373 iter 40 value 83.861768 iter 50 value 83.492378 iter 60 value 82.865351 iter 70 value 82.861063 final value 82.861044 converged Fitting Repeat 4 # weights: 103 initial value 97.878456 iter 10 value 94.408614 iter 20 value 90.485910 iter 30 value 86.620890 iter 40 value 86.493417 iter 50 value 85.672734 iter 60 value 85.330504 final value 85.330428 converged Fitting Repeat 5 # weights: 103 initial value 98.406671 iter 10 value 92.871728 iter 20 value 88.429599 iter 30 value 84.281492 iter 40 value 83.944531 iter 50 value 83.016561 iter 60 value 82.861701 final value 82.860834 converged Fitting Repeat 1 # weights: 305 initial value 106.939864 iter 10 value 95.350709 iter 20 value 92.019524 iter 30 value 87.121674 iter 40 value 83.194695 iter 50 value 81.317425 iter 60 value 80.453726 iter 70 value 79.943930 iter 80 value 79.821293 iter 90 value 79.509897 iter 100 value 79.382603 final value 79.382603 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.113972 iter 10 value 93.688552 iter 20 value 93.184392 iter 30 value 91.302227 iter 40 value 90.113660 iter 50 value 90.011751 iter 60 value 89.872725 iter 70 value 82.654599 iter 80 value 82.142970 iter 90 value 80.804649 iter 100 value 80.720953 final value 80.720953 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 125.775872 iter 10 value 94.507205 iter 20 value 86.752280 iter 30 value 86.004837 iter 40 value 84.875779 iter 50 value 84.443403 iter 60 value 84.193229 iter 70 value 83.300290 iter 80 value 81.273621 iter 90 value 80.534059 iter 100 value 79.779653 final value 79.779653 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.948293 iter 10 value 94.457108 iter 20 value 90.351636 iter 30 value 85.729539 iter 40 value 84.579758 iter 50 value 83.164768 iter 60 value 82.214058 iter 70 value 81.667940 iter 80 value 81.300704 iter 90 value 80.398660 iter 100 value 79.983930 final value 79.983930 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.826211 iter 10 value 94.478131 iter 20 value 94.248689 iter 30 value 92.111248 iter 40 value 90.024943 iter 50 value 89.569017 iter 60 value 84.283437 iter 70 value 83.856662 iter 80 value 83.292493 iter 90 value 82.946384 iter 100 value 82.495612 final value 82.495612 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.032359 iter 10 value 94.562698 iter 20 value 86.849451 iter 30 value 82.478078 iter 40 value 80.580923 iter 50 value 79.727107 iter 60 value 79.450636 iter 70 value 79.267862 iter 80 value 79.201654 iter 90 value 79.116751 iter 100 value 79.057981 final value 79.057981 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.047125 iter 10 value 94.235576 iter 20 value 89.811095 iter 30 value 87.230201 iter 40 value 86.696342 iter 50 value 86.123987 iter 60 value 85.594543 iter 70 value 83.241241 iter 80 value 82.153201 iter 90 value 81.717558 iter 100 value 80.667918 final value 80.667918 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.389412 iter 10 value 94.854515 iter 20 value 92.597479 iter 30 value 85.621532 iter 40 value 83.285551 iter 50 value 82.762047 iter 60 value 82.198356 iter 70 value 81.908425 iter 80 value 81.141291 iter 90 value 80.982250 iter 100 value 80.893776 final value 80.893776 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.647886 iter 10 value 95.185143 iter 20 value 94.610872 iter 30 value 87.516496 iter 40 value 87.328263 iter 50 value 86.890826 iter 60 value 84.792872 iter 70 value 83.490901 iter 80 value 81.782515 iter 90 value 80.544374 iter 100 value 80.170507 final value 80.170507 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 152.400106 iter 10 value 99.932767 iter 20 value 87.001237 iter 30 value 83.300947 iter 40 value 82.705644 iter 50 value 82.294746 iter 60 value 81.611182 iter 70 value 81.214324 iter 80 value 81.130428 iter 90 value 80.403277 iter 100 value 80.076277 final value 80.076277 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.826117 iter 10 value 94.485744 iter 20 value 94.481034 iter 30 value 86.857595 iter 40 value 84.291717 final value 84.283883 converged Fitting Repeat 2 # weights: 103 initial value 96.253778 final value 94.485718 converged Fitting Repeat 3 # weights: 103 initial value 97.113834 final value 94.485892 converged Fitting Repeat 4 # weights: 103 initial value 115.600884 final value 94.485755 converged Fitting Repeat 5 # weights: 103 initial value 101.897189 final value 94.485924 converged Fitting Repeat 1 # weights: 305 initial value 97.473221 iter 10 value 94.488841 iter 20 value 94.481030 iter 30 value 94.250098 iter 40 value 90.536878 iter 50 value 89.992226 iter 60 value 89.985799 iter 70 value 82.753777 iter 80 value 82.145229 iter 90 value 81.965346 iter 100 value 81.930824 final value 81.930824 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 126.944913 iter 10 value 94.493455 iter 20 value 94.488126 iter 30 value 94.395807 iter 40 value 90.933004 iter 50 value 90.777327 iter 60 value 90.752447 iter 70 value 90.749349 final value 90.748431 converged Fitting Repeat 3 # weights: 305 initial value 96.751830 iter 10 value 94.483359 iter 20 value 84.964676 iter 30 value 84.292492 iter 40 value 84.182848 iter 50 value 84.181252 iter 60 value 84.179142 iter 70 value 84.179011 iter 80 value 84.176284 iter 90 value 83.737200 iter 100 value 83.735719 final value 83.735719 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.941869 iter 10 value 94.471959 iter 20 value 94.308861 iter 30 value 88.702989 iter 40 value 87.542921 iter 50 value 87.539471 iter 60 value 86.921590 iter 70 value 86.872695 final value 86.872528 converged Fitting Repeat 5 # weights: 305 initial value 109.637934 iter 10 value 94.488936 iter 20 value 94.483500 iter 30 value 93.059692 iter 40 value 85.822782 iter 50 value 85.813372 iter 60 value 85.789512 iter 70 value 82.082680 iter 80 value 80.426251 iter 90 value 80.401224 iter 100 value 80.397024 final value 80.397024 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.401855 iter 10 value 89.683742 iter 20 value 85.220083 iter 30 value 81.346322 iter 40 value 80.932075 iter 50 value 80.843002 iter 60 value 80.593460 iter 70 value 80.541129 iter 80 value 80.483542 iter 90 value 80.459053 iter 100 value 80.455312 final value 80.455312 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.362209 iter 10 value 94.494443 iter 20 value 94.479491 iter 30 value 87.828224 iter 40 value 85.122364 iter 50 value 84.205791 iter 60 value 82.836997 iter 70 value 81.825047 iter 80 value 81.617299 iter 90 value 81.594763 iter 100 value 81.561080 final value 81.561080 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.413083 iter 10 value 90.099783 iter 20 value 89.864369 iter 30 value 89.863362 iter 40 value 88.917932 iter 50 value 88.909798 iter 60 value 88.908370 iter 70 value 88.908308 iter 80 value 88.745145 iter 90 value 85.090337 iter 100 value 81.774515 final value 81.774515 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.643280 iter 10 value 91.381353 iter 20 value 86.294589 iter 30 value 85.497630 iter 40 value 84.544810 iter 50 value 84.481631 iter 60 value 84.481228 iter 70 value 84.343209 iter 80 value 83.083670 iter 90 value 82.885589 iter 100 value 82.764273 final value 82.764273 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.843827 iter 10 value 94.487458 iter 20 value 94.157227 iter 30 value 86.728567 iter 40 value 84.524953 final value 84.522619 converged Fitting Repeat 1 # weights: 103 initial value 101.340717 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 101.267883 iter 10 value 93.915938 final value 93.915746 converged Fitting Repeat 3 # weights: 103 initial value 99.162857 final value 93.915746 converged Fitting Repeat 4 # weights: 103 initial value 94.096489 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 110.322328 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 109.467397 final value 93.915746 converged Fitting Repeat 2 # weights: 305 initial value 98.451391 iter 10 value 92.343311 iter 20 value 91.986319 iter 30 value 91.986053 final value 91.986050 converged Fitting Repeat 3 # weights: 305 initial value 94.454507 iter 10 value 93.672973 iter 10 value 93.672973 iter 10 value 93.672973 final value 93.672973 converged Fitting Repeat 4 # weights: 305 initial value 109.962209 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.870671 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 111.795758 iter 10 value 90.878640 iter 20 value 90.820582 final value 90.820513 converged Fitting Repeat 2 # weights: 507 initial value 94.936393 final value 93.915746 converged Fitting Repeat 3 # weights: 507 initial value 96.330650 iter 10 value 94.053756 final value 94.052909 converged Fitting Repeat 4 # weights: 507 initial value 96.689350 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 99.439896 final value 93.915746 converged Fitting Repeat 1 # weights: 103 initial value 109.450160 iter 10 value 93.979796 iter 20 value 93.614934 iter 30 value 91.583441 iter 40 value 91.210325 iter 50 value 91.098134 iter 60 value 85.664270 iter 70 value 85.077392 iter 80 value 82.797259 iter 90 value 82.612580 iter 100 value 82.224608 final value 82.224608 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 104.117236 iter 10 value 94.056957 iter 20 value 94.039388 iter 30 value 92.793338 iter 40 value 85.212240 iter 50 value 82.844095 iter 60 value 82.417507 iter 70 value 81.689100 iter 80 value 80.425205 iter 90 value 79.966892 iter 100 value 79.751177 final value 79.751177 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 101.912984 iter 10 value 94.052029 iter 20 value 93.846312 iter 30 value 93.726161 iter 40 value 85.203338 iter 50 value 82.427002 iter 60 value 82.382345 iter 70 value 82.228116 iter 80 value 81.748311 iter 90 value 80.797926 iter 100 value 80.271299 final value 80.271299 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.210720 iter 10 value 93.024583 iter 20 value 88.742890 iter 30 value 83.887276 iter 40 value 82.541990 iter 50 value 81.802798 iter 60 value 80.720330 iter 70 value 80.340302 final value 80.339175 converged Fitting Repeat 5 # weights: 103 initial value 103.712546 iter 10 value 93.950288 iter 20 value 86.943170 iter 30 value 85.314853 iter 40 value 84.603691 iter 50 value 83.652106 iter 60 value 83.587023 iter 70 value 83.578445 final value 83.578264 converged Fitting Repeat 1 # weights: 305 initial value 106.768891 iter 10 value 93.891339 iter 20 value 91.471859 iter 30 value 84.108144 iter 40 value 82.622368 iter 50 value 80.938826 iter 60 value 79.889862 iter 70 value 78.956030 iter 80 value 78.730408 iter 90 value 78.690896 iter 100 value 78.660097 final value 78.660097 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.256803 iter 10 value 93.899428 iter 20 value 85.306396 iter 30 value 84.264822 iter 40 value 82.721415 iter 50 value 82.329778 iter 60 value 81.561418 iter 70 value 81.291751 iter 80 value 81.073558 iter 90 value 81.048959 iter 100 value 80.945990 final value 80.945990 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.814050 iter 10 value 93.973004 iter 20 value 87.527936 iter 30 value 83.928474 iter 40 value 83.349642 iter 50 value 82.301583 iter 60 value 81.976275 iter 70 value 79.685014 iter 80 value 78.920292 iter 90 value 78.414554 iter 100 value 78.241588 final value 78.241588 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 99.906793 iter 10 value 93.960660 iter 20 value 88.311712 iter 30 value 83.267461 iter 40 value 82.366703 iter 50 value 81.998943 iter 60 value 80.657304 iter 70 value 80.039648 iter 80 value 79.535608 iter 90 value 79.400155 iter 100 value 78.939692 final value 78.939692 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.586620 iter 10 value 94.257571 iter 20 value 90.540770 iter 30 value 89.016364 iter 40 value 88.604503 iter 50 value 88.324184 iter 60 value 83.370646 iter 70 value 81.610899 iter 80 value 81.082557 iter 90 value 80.866652 iter 100 value 80.755780 final value 80.755780 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 141.176829 iter 10 value 97.003693 iter 20 value 86.087185 iter 30 value 82.922650 iter 40 value 82.535935 iter 50 value 80.636382 iter 60 value 79.181096 iter 70 value 78.690044 iter 80 value 78.667991 iter 90 value 78.661919 iter 100 value 78.624246 final value 78.624246 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 121.202259 iter 10 value 93.974911 iter 20 value 89.299621 iter 30 value 88.801924 iter 40 value 88.687874 iter 50 value 86.286131 iter 60 value 82.669747 iter 70 value 81.640501 iter 80 value 80.825635 iter 90 value 80.605901 iter 100 value 80.306238 final value 80.306238 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.525317 iter 10 value 87.288648 iter 20 value 84.939146 iter 30 value 81.682385 iter 40 value 81.054372 iter 50 value 80.599176 iter 60 value 80.293763 iter 70 value 80.129273 iter 80 value 79.980474 iter 90 value 79.744849 iter 100 value 79.428177 final value 79.428177 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.613882 iter 10 value 95.316727 iter 20 value 91.485409 iter 30 value 87.930252 iter 40 value 84.814320 iter 50 value 84.155589 iter 60 value 83.427054 iter 70 value 82.342780 iter 80 value 81.513183 iter 90 value 81.241899 iter 100 value 81.097807 final value 81.097807 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.128372 iter 10 value 94.101868 iter 20 value 86.458559 iter 30 value 85.783066 iter 40 value 85.128292 iter 50 value 82.674499 iter 60 value 79.881659 iter 70 value 79.334311 iter 80 value 79.198187 iter 90 value 78.845554 iter 100 value 78.676485 final value 78.676485 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.998179 final value 94.054501 converged Fitting Repeat 2 # weights: 103 initial value 103.895490 final value 93.917377 converged Fitting Repeat 3 # weights: 103 initial value 97.553259 final value 93.917169 converged Fitting Repeat 4 # weights: 103 initial value 98.533063 final value 94.054277 converged Fitting Repeat 5 # weights: 103 initial value 103.035541 final value 94.054421 converged Fitting Repeat 1 # weights: 305 initial value 96.331341 iter 10 value 94.076678 iter 20 value 89.650271 iter 30 value 86.198549 iter 40 value 86.183398 iter 50 value 85.896620 iter 60 value 84.527516 iter 70 value 84.510920 iter 80 value 84.493766 iter 90 value 81.126089 iter 100 value 78.726012 final value 78.726012 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 133.343579 iter 10 value 94.057316 iter 20 value 94.052961 iter 30 value 86.915836 iter 40 value 86.180070 iter 50 value 86.179647 iter 60 value 84.789133 iter 70 value 84.777671 iter 80 value 84.772571 final value 84.772244 converged Fitting Repeat 3 # weights: 305 initial value 97.422230 iter 10 value 89.178714 iter 20 value 83.566937 iter 30 value 83.547003 iter 40 value 83.545824 iter 50 value 83.422069 iter 60 value 81.423391 iter 70 value 81.413364 final value 81.413280 converged Fitting Repeat 4 # weights: 305 initial value 104.770361 iter 10 value 94.057615 iter 20 value 93.855184 iter 30 value 93.492165 iter 40 value 93.464474 final value 93.464369 converged Fitting Repeat 5 # weights: 305 initial value 104.852900 iter 10 value 94.057754 iter 20 value 94.053182 final value 94.052930 converged Fitting Repeat 1 # weights: 507 initial value 97.209823 iter 10 value 94.058784 iter 20 value 94.040897 iter 30 value 93.858976 iter 40 value 91.762765 iter 50 value 90.780583 iter 60 value 88.148530 iter 70 value 87.998595 iter 80 value 87.950360 iter 90 value 87.228391 iter 100 value 81.980294 final value 81.980294 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 117.154214 iter 10 value 93.380604 iter 20 value 93.375606 iter 30 value 93.093675 iter 40 value 89.083961 iter 50 value 88.275067 iter 60 value 87.957280 final value 87.724509 converged Fitting Repeat 3 # weights: 507 initial value 100.035187 iter 10 value 94.060915 iter 20 value 85.855938 final value 83.432819 converged Fitting Repeat 4 # weights: 507 initial value 128.491541 iter 10 value 94.061234 iter 20 value 94.052600 iter 30 value 90.183268 iter 40 value 84.814044 iter 50 value 84.564354 iter 60 value 83.348448 iter 70 value 81.983097 iter 80 value 81.888340 iter 90 value 81.887889 iter 100 value 81.762952 final value 81.762952 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.832444 iter 10 value 94.061632 iter 20 value 94.056721 iter 30 value 93.988724 iter 40 value 93.922282 iter 50 value 93.918314 iter 60 value 93.826170 iter 70 value 93.495290 iter 80 value 91.311907 iter 90 value 87.203816 iter 100 value 87.186644 final value 87.186644 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.080552 iter 10 value 91.145880 iter 20 value 91.145741 final value 91.145730 converged Fitting Repeat 2 # weights: 103 initial value 95.163641 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.374206 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.593590 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.097837 iter 10 value 92.732051 iter 20 value 92.731184 iter 20 value 92.731183 iter 20 value 92.731183 final value 92.731183 converged Fitting Repeat 1 # weights: 305 initial value 109.968006 final value 94.483810 converged Fitting Repeat 2 # weights: 305 initial value 103.867683 final value 93.300000 converged Fitting Repeat 3 # weights: 305 initial value 104.595037 final value 93.299996 converged Fitting Repeat 4 # weights: 305 initial value 102.638857 final value 94.484210 converged Fitting Repeat 5 # weights: 305 initial value 95.702330 iter 10 value 92.747588 iter 20 value 92.731198 final value 92.731184 converged Fitting Repeat 1 # weights: 507 initial value 131.869886 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 124.976693 iter 10 value 92.752750 iter 20 value 92.731202 final value 92.731183 converged Fitting Repeat 3 # weights: 507 initial value 105.580127 iter 10 value 93.105535 iter 20 value 90.159135 iter 30 value 90.070607 iter 40 value 90.068048 final value 90.068030 converged Fitting Repeat 4 # weights: 507 initial value 108.881092 iter 10 value 89.856641 iter 20 value 87.872797 final value 87.853335 converged Fitting Repeat 5 # weights: 507 initial value 108.361820 iter 10 value 92.755414 iter 20 value 92.731204 final value 92.731183 converged Fitting Repeat 1 # weights: 103 initial value 98.954197 iter 10 value 94.488546 iter 20 value 94.190393 iter 30 value 93.729812 iter 40 value 93.684383 iter 50 value 93.678059 iter 60 value 93.674558 iter 70 value 93.668382 iter 80 value 93.199872 iter 90 value 86.977753 iter 100 value 85.095606 final value 85.095606 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.889943 iter 10 value 94.468903 iter 20 value 93.873420 iter 30 value 93.517498 iter 40 value 93.230106 iter 50 value 87.684230 iter 60 value 83.449234 iter 70 value 82.920706 iter 80 value 82.565278 iter 90 value 82.534371 final value 82.533437 converged Fitting Repeat 3 # weights: 103 initial value 104.801726 iter 10 value 94.408780 iter 20 value 92.725722 iter 30 value 88.294148 iter 40 value 84.921168 iter 50 value 84.704949 iter 60 value 83.430312 iter 70 value 82.462516 iter 80 value 82.285661 iter 90 value 82.269931 final value 82.269598 converged Fitting Repeat 4 # weights: 103 initial value 96.794398 iter 10 value 94.479242 iter 20 value 85.543395 iter 30 value 84.114018 iter 40 value 83.607567 iter 50 value 83.380601 iter 60 value 82.626964 iter 70 value 82.293663 iter 80 value 82.269598 iter 80 value 82.269597 iter 80 value 82.269597 final value 82.269597 converged Fitting Repeat 5 # weights: 103 initial value 97.513414 iter 10 value 94.446596 iter 20 value 84.978202 iter 30 value 82.300783 iter 40 value 82.190308 iter 50 value 81.528251 iter 60 value 80.782821 iter 70 value 80.365687 iter 80 value 80.033869 iter 90 value 79.937582 final value 79.937531 converged Fitting Repeat 1 # weights: 305 initial value 114.576503 iter 10 value 94.439239 iter 20 value 87.796202 iter 30 value 86.382545 iter 40 value 82.209570 iter 50 value 81.499808 iter 60 value 80.371242 iter 70 value 79.149824 iter 80 value 78.929315 iter 90 value 78.530232 iter 100 value 78.376786 final value 78.376786 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.723722 iter 10 value 94.485699 iter 20 value 92.630924 iter 30 value 85.700462 iter 40 value 81.616466 iter 50 value 80.826786 iter 60 value 79.486944 iter 70 value 79.078636 iter 80 value 78.923179 iter 90 value 78.898669 iter 100 value 78.694990 final value 78.694990 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.000344 iter 10 value 93.266590 iter 20 value 93.082060 iter 30 value 89.459825 iter 40 value 85.897708 iter 50 value 85.051916 iter 60 value 83.655118 iter 70 value 82.592482 iter 80 value 82.388704 iter 90 value 82.327239 iter 100 value 81.205215 final value 81.205215 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.788548 iter 10 value 93.816519 iter 20 value 93.158124 iter 30 value 91.862775 iter 40 value 84.038026 iter 50 value 82.512030 iter 60 value 80.900439 iter 70 value 79.896069 iter 80 value 79.669309 iter 90 value 79.624774 iter 100 value 79.518104 final value 79.518104 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.112488 iter 10 value 93.242975 iter 20 value 92.051167 iter 30 value 84.191743 iter 40 value 81.483114 iter 50 value 80.968507 iter 60 value 80.139746 iter 70 value 79.727661 iter 80 value 79.486163 iter 90 value 79.282280 iter 100 value 79.144386 final value 79.144386 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.950839 iter 10 value 94.500675 iter 20 value 84.546124 iter 30 value 82.461186 iter 40 value 81.116056 iter 50 value 80.641460 iter 60 value 79.757533 iter 70 value 79.497870 iter 80 value 78.975280 iter 90 value 78.451764 iter 100 value 78.288851 final value 78.288851 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.015738 iter 10 value 94.871047 iter 20 value 93.092982 iter 30 value 86.058753 iter 40 value 84.929468 iter 50 value 81.260916 iter 60 value 79.769347 iter 70 value 79.089473 iter 80 value 78.699734 iter 90 value 78.591062 iter 100 value 78.563500 final value 78.563500 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.760186 iter 10 value 96.024350 iter 20 value 93.579515 iter 30 value 93.277311 iter 40 value 91.837310 iter 50 value 87.905805 iter 60 value 82.982841 iter 70 value 80.397818 iter 80 value 79.510310 iter 90 value 78.991637 iter 100 value 78.544177 final value 78.544177 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 136.560342 iter 10 value 100.318769 iter 20 value 94.605144 iter 30 value 91.200368 iter 40 value 85.176438 iter 50 value 83.219771 iter 60 value 81.368896 iter 70 value 80.846926 iter 80 value 80.605842 iter 90 value 80.349665 iter 100 value 80.043598 final value 80.043598 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.985689 iter 10 value 95.395189 iter 20 value 94.204578 iter 30 value 85.514812 iter 40 value 84.762999 iter 50 value 83.109961 iter 60 value 80.866359 iter 70 value 79.903175 iter 80 value 79.130736 iter 90 value 78.335263 iter 100 value 78.056836 final value 78.056836 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.447799 final value 94.486040 converged Fitting Repeat 2 # weights: 103 initial value 97.214083 iter 10 value 92.687899 iter 20 value 92.495454 iter 30 value 92.495297 final value 92.493835 converged Fitting Repeat 3 # weights: 103 initial value 94.672054 final value 94.486038 converged Fitting Repeat 4 # weights: 103 initial value 97.462849 iter 10 value 94.485868 iter 20 value 94.484216 final value 94.484212 converged Fitting Repeat 5 # weights: 103 initial value 95.313736 final value 94.485492 converged Fitting Repeat 1 # weights: 305 initial value 100.514719 iter 10 value 93.880424 iter 20 value 93.876568 iter 30 value 92.861334 iter 40 value 92.739634 iter 50 value 92.716930 iter 60 value 83.341405 iter 70 value 83.043693 iter 80 value 83.042368 final value 83.042364 converged Fitting Repeat 2 # weights: 305 initial value 106.519671 iter 10 value 94.489159 iter 20 value 94.412923 iter 30 value 92.742405 iter 40 value 92.739567 final value 92.739502 converged Fitting Repeat 3 # weights: 305 initial value 115.883186 iter 10 value 92.771127 iter 20 value 92.743257 iter 30 value 92.738519 iter 40 value 92.325269 iter 50 value 90.310400 iter 60 value 82.001675 iter 70 value 80.984753 iter 80 value 80.967162 iter 90 value 80.946185 final value 80.945995 converged Fitting Repeat 4 # weights: 305 initial value 105.269528 iter 10 value 92.748712 iter 20 value 92.742516 iter 30 value 83.631092 iter 40 value 82.147891 iter 50 value 82.104812 iter 60 value 82.101906 iter 70 value 81.406502 iter 80 value 81.400990 iter 90 value 81.294694 iter 100 value 81.212831 final value 81.212831 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.921122 iter 10 value 94.488941 iter 20 value 94.463720 iter 30 value 93.300629 final value 93.300593 converged Fitting Repeat 1 # weights: 507 initial value 125.885689 iter 10 value 83.379555 iter 20 value 81.705996 iter 30 value 81.705049 iter 40 value 81.367152 iter 50 value 81.059196 iter 60 value 81.051369 iter 70 value 81.051122 iter 80 value 81.050536 iter 90 value 81.049593 iter 100 value 81.049336 final value 81.049336 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.839097 iter 10 value 94.113381 iter 10 value 94.113381 final value 94.113381 converged Fitting Repeat 3 # weights: 507 initial value 107.744263 iter 10 value 94.492264 iter 20 value 94.325285 iter 30 value 84.870093 iter 40 value 82.566789 iter 50 value 78.048220 iter 60 value 77.552093 iter 70 value 77.528316 iter 80 value 77.470402 iter 90 value 77.207012 iter 100 value 77.054751 final value 77.054751 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.067461 iter 10 value 92.703821 iter 20 value 92.503468 iter 30 value 92.502289 iter 40 value 91.892510 iter 50 value 85.384260 iter 60 value 82.173112 iter 70 value 77.723981 iter 80 value 76.453587 iter 90 value 76.399879 iter 100 value 76.394853 final value 76.394853 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 138.779993 iter 10 value 92.768500 iter 20 value 92.651489 iter 30 value 92.484723 iter 40 value 92.214088 iter 50 value 92.211697 iter 60 value 92.208728 iter 70 value 92.208154 iter 80 value 90.421884 iter 90 value 84.922258 iter 100 value 77.893783 final value 77.893783 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.424939 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.831224 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.643104 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.322691 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.724029 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 115.127293 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 104.881595 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 112.918964 final value 93.962011 converged Fitting Repeat 4 # weights: 305 initial value 95.999739 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 113.402378 iter 10 value 93.870537 final value 93.672973 converged Fitting Repeat 1 # weights: 507 initial value 97.993767 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 98.620217 final value 94.038251 converged Fitting Repeat 3 # weights: 507 initial value 97.814331 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 110.094099 final value 93.688926 converged Fitting Repeat 5 # weights: 507 initial value 107.079393 final value 94.038251 converged Fitting Repeat 1 # weights: 103 initial value 102.413279 iter 10 value 93.627466 iter 20 value 91.070386 iter 30 value 88.727167 iter 40 value 86.528070 iter 50 value 84.885812 iter 60 value 84.192716 iter 70 value 84.147893 iter 80 value 84.143433 final value 84.143426 converged Fitting Repeat 2 # weights: 103 initial value 97.319013 iter 10 value 94.056666 iter 20 value 93.811185 iter 30 value 93.506296 iter 40 value 93.502197 iter 50 value 93.500515 iter 60 value 88.132969 iter 70 value 85.397044 iter 80 value 85.161499 iter 90 value 85.138328 iter 100 value 84.745006 final value 84.745006 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.377924 iter 10 value 94.056842 iter 20 value 94.042435 iter 30 value 89.945293 iter 40 value 87.800176 iter 50 value 86.791992 iter 60 value 84.047036 iter 70 value 82.865561 iter 80 value 82.609542 iter 90 value 82.311655 iter 100 value 82.108524 final value 82.108524 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.046680 iter 10 value 94.051051 iter 20 value 94.042806 iter 30 value 94.042095 iter 40 value 93.667140 iter 50 value 88.492331 iter 60 value 87.579264 iter 70 value 87.068634 iter 80 value 85.510913 iter 90 value 84.399103 iter 100 value 84.324204 final value 84.324204 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.193150 iter 10 value 94.057018 iter 20 value 93.934607 iter 30 value 89.203557 iter 40 value 87.027236 iter 50 value 84.077019 iter 60 value 83.476813 iter 70 value 82.874398 iter 80 value 82.493072 iter 90 value 82.184850 iter 100 value 82.115101 final value 82.115101 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 105.362455 iter 10 value 94.264346 iter 20 value 94.073402 iter 30 value 94.032021 iter 40 value 93.385169 iter 50 value 88.386276 iter 60 value 87.456082 iter 70 value 84.927234 iter 80 value 83.051093 iter 90 value 82.236219 iter 100 value 82.138759 final value 82.138759 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.615942 iter 10 value 93.471825 iter 20 value 87.119300 iter 30 value 86.403256 iter 40 value 85.074017 iter 50 value 84.532977 iter 60 value 84.056002 iter 70 value 83.836609 iter 80 value 83.705240 iter 90 value 83.613226 iter 100 value 83.369906 final value 83.369906 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.621754 iter 10 value 94.382035 iter 20 value 93.940274 iter 30 value 88.575910 iter 40 value 87.790319 iter 50 value 87.504291 iter 60 value 86.903390 iter 70 value 86.859064 iter 80 value 86.414597 iter 90 value 82.412075 iter 100 value 81.768722 final value 81.768722 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.597272 iter 10 value 93.949387 iter 20 value 86.882585 iter 30 value 84.764365 iter 40 value 83.911950 iter 50 value 83.368634 iter 60 value 82.255138 iter 70 value 81.914689 iter 80 value 81.791317 iter 90 value 81.504123 iter 100 value 81.125069 final value 81.125069 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.527790 iter 10 value 92.860749 iter 20 value 91.514579 iter 30 value 90.156376 iter 40 value 88.298449 iter 50 value 87.496165 iter 60 value 87.253363 iter 70 value 84.633871 iter 80 value 83.207012 iter 90 value 82.481218 iter 100 value 82.221833 final value 82.221833 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.670684 iter 10 value 94.168237 iter 20 value 93.673577 iter 30 value 92.431703 iter 40 value 87.167602 iter 50 value 86.703317 iter 60 value 86.137236 iter 70 value 83.708786 iter 80 value 82.701282 iter 90 value 81.883718 iter 100 value 81.156463 final value 81.156463 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.921919 iter 10 value 95.185347 iter 20 value 94.104972 iter 30 value 88.763955 iter 40 value 88.058680 iter 50 value 87.431725 iter 60 value 84.609816 iter 70 value 83.293409 iter 80 value 82.700459 iter 90 value 82.362329 iter 100 value 82.252369 final value 82.252369 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 134.964397 iter 10 value 94.115818 iter 20 value 88.675667 iter 30 value 87.036037 iter 40 value 86.816906 iter 50 value 85.803709 iter 60 value 84.106135 iter 70 value 83.609912 iter 80 value 83.446591 iter 90 value 82.896507 iter 100 value 82.334849 final value 82.334849 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.028887 iter 10 value 93.923620 iter 20 value 86.628615 iter 30 value 85.430087 iter 40 value 83.201428 iter 50 value 82.755659 iter 60 value 82.362738 iter 70 value 81.694603 iter 80 value 80.888211 iter 90 value 80.752386 iter 100 value 80.619059 final value 80.619059 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.432557 iter 10 value 94.222135 iter 20 value 92.735110 iter 30 value 85.550735 iter 40 value 85.165961 iter 50 value 83.318607 iter 60 value 82.026516 iter 70 value 81.541273 iter 80 value 81.271118 iter 90 value 80.730642 iter 100 value 80.591975 final value 80.591975 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.423502 iter 10 value 94.104161 iter 20 value 94.096988 iter 30 value 94.057269 final value 94.052914 converged Fitting Repeat 2 # weights: 103 initial value 99.677242 final value 94.039941 converged Fitting Repeat 3 # weights: 103 initial value 97.580789 iter 10 value 94.091144 iter 20 value 94.087728 iter 30 value 94.054289 final value 94.052917 converged Fitting Repeat 4 # weights: 103 initial value 119.726968 final value 94.039729 converged Fitting Repeat 5 # weights: 103 initial value 94.266154 final value 94.054456 converged Fitting Repeat 1 # weights: 305 initial value 97.384309 iter 10 value 94.057748 iter 20 value 94.005543 iter 30 value 93.603056 iter 40 value 85.993066 iter 50 value 83.340112 iter 60 value 83.337241 final value 83.337239 converged Fitting Repeat 2 # weights: 305 initial value 107.609629 iter 10 value 94.042532 iter 20 value 94.038589 final value 94.038583 converged Fitting Repeat 3 # weights: 305 initial value 95.133833 iter 10 value 90.888808 iter 20 value 85.639968 iter 30 value 85.552946 iter 40 value 85.552581 iter 50 value 85.549705 iter 60 value 85.512401 iter 70 value 85.149663 iter 80 value 85.104742 iter 90 value 85.104480 iter 100 value 85.104362 final value 85.104362 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 121.687287 iter 10 value 94.055655 iter 20 value 93.882427 final value 93.542931 converged Fitting Repeat 5 # weights: 305 initial value 100.801347 iter 10 value 85.587664 iter 20 value 82.953947 iter 30 value 82.349906 iter 40 value 82.149599 iter 50 value 82.147729 iter 60 value 82.082775 iter 70 value 81.640603 iter 80 value 81.524120 iter 90 value 81.516851 iter 100 value 81.468497 final value 81.468497 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.068368 iter 10 value 94.046343 iter 20 value 93.909000 iter 30 value 85.498403 iter 40 value 83.789589 iter 50 value 83.499886 iter 60 value 83.497311 final value 83.497200 converged Fitting Repeat 2 # weights: 507 initial value 101.061028 iter 10 value 94.046536 iter 20 value 94.038302 iter 30 value 92.127260 iter 40 value 84.877700 iter 50 value 84.341769 iter 60 value 84.330934 final value 84.330865 converged Fitting Repeat 3 # weights: 507 initial value 102.037381 iter 10 value 93.531154 iter 20 value 91.926100 iter 30 value 91.672039 iter 40 value 82.647970 iter 50 value 82.218711 iter 60 value 82.213970 iter 70 value 82.086171 iter 80 value 81.015248 iter 90 value 80.444838 iter 100 value 80.399074 final value 80.399074 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 97.021983 iter 10 value 93.710480 iter 20 value 93.697052 iter 30 value 93.690237 iter 40 value 93.588762 iter 50 value 85.556907 iter 60 value 85.055203 iter 70 value 84.613689 iter 80 value 84.517909 iter 90 value 81.731510 iter 100 value 80.642917 final value 80.642917 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.253661 iter 10 value 94.060617 iter 20 value 92.479204 iter 30 value 89.550040 iter 40 value 86.230968 iter 50 value 85.857069 iter 60 value 84.513934 iter 70 value 84.484924 iter 80 value 82.879486 iter 90 value 82.467563 iter 100 value 81.551569 final value 81.551569 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.910590 iter 10 value 117.767359 iter 20 value 117.732829 final value 117.728758 converged Fitting Repeat 2 # weights: 507 initial value 131.373200 iter 10 value 117.898357 iter 20 value 117.778966 iter 30 value 117.735952 final value 117.729881 converged Fitting Repeat 3 # weights: 507 initial value 121.001325 iter 10 value 117.525669 iter 20 value 117.506452 iter 30 value 117.503966 iter 40 value 117.463199 iter 50 value 117.460032 iter 60 value 115.928555 iter 70 value 109.546454 iter 80 value 106.782382 iter 90 value 106.761268 iter 100 value 106.756083 final value 106.756083 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 126.155095 final value 117.898615 converged Fitting Repeat 5 # weights: 507 initial value 145.235250 iter 10 value 117.903892 iter 20 value 117.891477 iter 30 value 116.169314 iter 40 value 107.414732 iter 50 value 105.755534 iter 60 value 104.127518 iter 70 value 103.337852 iter 80 value 103.331324 iter 90 value 103.327955 final value 103.326219 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Feb 6 02:36:53 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 43.85 1.45 141.35
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 35.16 | 1.89 | 37.07 | |
FreqInteractors | 0.31 | 0.00 | 0.34 | |
calculateAAC | 0.05 | 0.02 | 0.06 | |
calculateAutocor | 0.50 | 0.10 | 0.61 | |
calculateCTDC | 0.09 | 0.02 | 0.11 | |
calculateCTDD | 0.80 | 0.08 | 0.89 | |
calculateCTDT | 0.33 | 0.01 | 0.34 | |
calculateCTriad | 0.40 | 0.00 | 0.41 | |
calculateDC | 0.13 | 0.02 | 0.14 | |
calculateF | 0.36 | 0.06 | 0.42 | |
calculateKSAAP | 0.15 | 0.00 | 0.16 | |
calculateQD_Sm | 2.44 | 0.24 | 2.67 | |
calculateTC | 1.75 | 0.12 | 1.89 | |
calculateTC_Sm | 0.28 | 0.02 | 0.30 | |
corr_plot | 34.47 | 1.53 | 36.04 | |
enrichfindP | 0.78 | 0.09 | 12.74 | |
enrichfind_hp | 0.08 | 0.02 | 1.11 | |
enrichplot | 0.36 | 0.01 | 0.37 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.03 | 0.00 | 2.35 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.09 | 0.02 | 0.10 | |
pred_ensembel | 13.24 | 0.33 | 12.07 | |
var_imp | 33.94 | 0.98 | 34.93 | |