Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-02-06 11:41 -0500 (Thu, 06 Feb 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_64R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" 4719
palomino7Windows Server 2022 Datacenterx64R Under development (unstable) (2025-01-21 r87610 ucrt) -- "Unsuffered Consequences" 4480
lconwaymacOS 12.7.1 Montereyx86_64R Under development (unstable) (2025-01-22 r87618) -- "Unsuffered Consequences" 4491
kjohnson3macOS 13.7.1 Venturaarm64R Under development (unstable) (2025-01-20 r87609) -- "Unsuffered Consequences" 4444
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 981/2295HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.13.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-02-05 13:48 -0500 (Wed, 05 Feb 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: 65e718f
git_last_commit_date: 2024-10-29 11:04:11 -0500 (Tue, 29 Oct 2024)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published


CHECK results for HPiP on palomino7

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.13.0
Command: E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz
StartedAt: 2025-02-06 02:30:30 -0500 (Thu, 06 Feb 2025)
EndedAt: 2025-02-06 02:37:04 -0500 (Thu, 06 Feb 2025)
EllapsedTime: 393.5 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings HPiP_1.13.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck'
* using R Under development (unstable) (2025-01-21 r87610 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.3.0
    GNU Fortran (GCC) 13.3.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.13.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
FSmethod      35.16   1.89   37.07
corr_plot     34.47   1.53   36.04
var_imp       33.94   0.98   34.93
pred_ensembel 13.24   0.33   12.07
enrichfindP    0.78   0.09   12.74
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  'E:/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'E:/biocbuild/bbs-3.21-bioc/R/library'
* installing *source* package 'HPiP' ...
** this is package 'HPiP' version '1.13.0'
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2025-01-21 r87610 ucrt) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 103.194928 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.200898 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.562231 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.192370 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.051009 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 136.717717 
iter  10 value 94.466876
final  value 94.466823 
converged
Fitting Repeat 2 

# weights:  305
initial  value 116.980847 
final  value 94.484210 
converged
Fitting Repeat 3 

# weights:  305
initial  value 110.694242 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.689658 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.037355 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.961660 
final  value 94.480513 
converged
Fitting Repeat 2 

# weights:  507
initial  value 97.376068 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  507
initial  value 105.099013 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 126.280532 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 111.816849 
final  value 94.466823 
converged
Fitting Repeat 1 

# weights:  103
initial  value 114.028602 
iter  10 value 94.412789
iter  20 value 90.180446
iter  30 value 87.534060
iter  40 value 87.023871
iter  50 value 86.772693
iter  60 value 85.464560
iter  70 value 85.075757
iter  80 value 84.936165
iter  90 value 84.829850
iter 100 value 84.775660
final  value 84.775660 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 96.357537 
iter  10 value 94.441460
iter  20 value 94.197132
iter  30 value 93.552851
iter  40 value 86.355258
iter  50 value 85.210534
iter  60 value 84.898071
iter  70 value 84.667442
iter  80 value 84.545894
iter  90 value 84.467295
iter 100 value 84.265263
final  value 84.265263 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 106.722140 
iter  10 value 94.487874
iter  20 value 94.346918
iter  30 value 90.769991
iter  40 value 89.861594
iter  50 value 86.774962
iter  60 value 85.733729
iter  70 value 85.634553
iter  80 value 85.619304
iter  90 value 85.581416
iter 100 value 85.156905
final  value 85.156905 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 100.876608 
iter  10 value 94.488512
iter  20 value 92.307368
iter  30 value 91.090540
iter  40 value 90.454123
iter  50 value 85.982003
iter  60 value 85.449786
iter  70 value 84.989857
iter  80 value 84.828996
iter  90 value 84.776439
final  value 84.774199 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.674479 
iter  10 value 94.145654
iter  20 value 87.024463
iter  30 value 86.219543
iter  40 value 86.047717
iter  50 value 85.868524
iter  60 value 85.207080
iter  70 value 84.797157
iter  80 value 84.774201
final  value 84.774199 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.289716 
iter  10 value 89.158685
iter  20 value 86.518623
iter  30 value 86.022324
iter  40 value 85.471379
iter  50 value 84.919165
iter  60 value 84.364429
iter  70 value 83.727036
iter  80 value 83.218670
iter  90 value 83.094962
iter 100 value 83.092769
final  value 83.092769 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 102.947865 
iter  10 value 94.409009
iter  20 value 87.914856
iter  30 value 87.302152
iter  40 value 85.635186
iter  50 value 85.006897
iter  60 value 84.349759
iter  70 value 83.654594
iter  80 value 83.461837
iter  90 value 83.225433
iter 100 value 83.101758
final  value 83.101758 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.371733 
iter  10 value 94.489785
iter  20 value 93.389984
iter  30 value 86.177859
iter  40 value 85.299134
iter  50 value 84.354970
iter  60 value 83.906332
iter  70 value 82.852600
iter  80 value 82.529128
iter  90 value 82.486434
iter 100 value 82.460915
final  value 82.460915 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.152259 
iter  10 value 94.415594
iter  20 value 93.326743
iter  30 value 90.092961
iter  40 value 88.156708
iter  50 value 86.734275
iter  60 value 84.822961
iter  70 value 84.174192
iter  80 value 83.611169
iter  90 value 83.026944
iter 100 value 82.845283
final  value 82.845283 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 104.166712 
iter  10 value 94.493419
iter  20 value 92.656680
iter  30 value 90.666613
iter  40 value 84.905537
iter  50 value 84.287450
iter  60 value 83.365719
iter  70 value 83.134421
iter  80 value 82.798737
iter  90 value 82.657551
iter 100 value 82.463027
final  value 82.463027 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 104.515312 
iter  10 value 94.673263
iter  20 value 88.486071
iter  30 value 86.441039
iter  40 value 85.426162
iter  50 value 84.804010
iter  60 value 84.425762
iter  70 value 84.314215
iter  80 value 84.167124
iter  90 value 84.035762
iter 100 value 83.147130
final  value 83.147130 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 119.814482 
iter  10 value 94.567126
iter  20 value 93.256707
iter  30 value 88.283806
iter  40 value 85.822825
iter  50 value 85.002731
iter  60 value 83.888693
iter  70 value 83.278688
iter  80 value 82.760194
iter  90 value 82.540363
iter 100 value 82.441456
final  value 82.441456 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 115.897717 
iter  10 value 94.582888
iter  20 value 93.322961
iter  30 value 90.314649
iter  40 value 88.368404
iter  50 value 87.472263
iter  60 value 86.712387
iter  70 value 85.530027
iter  80 value 84.185390
iter  90 value 83.706223
iter 100 value 83.476549
final  value 83.476549 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.366742 
iter  10 value 87.862324
iter  20 value 86.058495
iter  30 value 85.153631
iter  40 value 84.050399
iter  50 value 82.961252
iter  60 value 82.357710
iter  70 value 82.256234
iter  80 value 82.216806
iter  90 value 82.121718
iter 100 value 82.075698
final  value 82.075698 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 116.508220 
iter  10 value 94.340743
iter  20 value 88.256497
iter  30 value 86.917169
iter  40 value 86.081414
iter  50 value 84.464846
iter  60 value 83.091780
iter  70 value 82.722499
iter  80 value 82.594684
iter  90 value 82.421950
iter 100 value 82.374480
final  value 82.374480 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.795704 
iter  10 value 94.468364
final  value 94.466844 
converged
Fitting Repeat 2 

# weights:  103
initial  value 108.287543 
final  value 94.485776 
converged
Fitting Repeat 3 

# weights:  103
initial  value 111.399516 
final  value 94.486064 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.495826 
final  value 94.485721 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.669898 
final  value 94.485651 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.101472 
iter  10 value 94.489377
iter  20 value 94.374949
iter  30 value 89.420749
iter  40 value 87.445289
iter  50 value 87.156218
iter  60 value 87.072296
iter  70 value 87.037968
final  value 87.034164 
converged
Fitting Repeat 2 

# weights:  305
initial  value 105.807038 
iter  10 value 94.488461
iter  20 value 94.484179
iter  30 value 88.158198
iter  40 value 86.452716
iter  50 value 84.826831
iter  60 value 84.730395
iter  70 value 84.712207
final  value 84.712203 
converged
Fitting Repeat 3 

# weights:  305
initial  value 125.079079 
iter  10 value 94.489593
iter  20 value 94.429892
iter  30 value 94.038621
iter  40 value 92.464102
iter  50 value 92.402522
iter  60 value 92.378831
iter  70 value 92.374569
iter  80 value 91.287356
iter  90 value 91.285825
final  value 91.285823 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.706796 
iter  10 value 94.489033
iter  20 value 94.471191
iter  30 value 92.678341
iter  40 value 88.228248
iter  50 value 88.223000
iter  60 value 88.218109
iter  70 value 88.030326
iter  80 value 85.224669
iter  90 value 84.616689
iter 100 value 83.874768
final  value 83.874768 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 95.951532 
iter  10 value 94.487428
iter  20 value 93.142371
iter  30 value 93.136643
iter  40 value 89.009091
iter  50 value 88.349846
iter  60 value 88.338705
iter  70 value 88.293284
iter  80 value 88.291669
iter  90 value 88.251454
iter 100 value 87.905853
final  value 87.905853 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 104.558580 
iter  10 value 87.403356
iter  20 value 85.697575
iter  30 value 85.661842
final  value 85.660817 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.241448 
iter  10 value 89.245957
iter  20 value 88.027389
iter  30 value 87.858658
iter  40 value 87.813172
final  value 87.812321 
converged
Fitting Repeat 3 

# weights:  507
initial  value 120.071580 
iter  10 value 95.110317
iter  20 value 88.945883
iter  30 value 88.927779
iter  40 value 87.780834
iter  50 value 86.607096
iter  60 value 86.429772
iter  70 value 86.402459
iter  80 value 86.370017
iter  90 value 86.361152
iter 100 value 86.358608
final  value 86.358608 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 124.976423 
iter  10 value 89.782472
iter  20 value 87.786292
iter  30 value 87.779899
iter  40 value 87.711478
iter  50 value 87.710743
iter  60 value 85.915105
iter  70 value 85.504745
iter  80 value 85.502808
iter  90 value 84.982693
iter 100 value 84.969607
final  value 84.969607 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.071139 
iter  10 value 94.475454
iter  20 value 94.342186
iter  30 value 85.657631
iter  40 value 85.651154
iter  50 value 85.650594
iter  60 value 85.276875
iter  70 value 84.619239
iter  80 value 84.561323
iter  90 value 84.183922
iter 100 value 83.778705
final  value 83.778705 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.633342 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.679719 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.897802 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.489924 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.477852 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.258548 
iter  10 value 94.466985
final  value 94.466823 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.111214 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.638343 
final  value 94.461538 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.941694 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  305
initial  value 106.043561 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 106.804544 
iter  10 value 94.195523
iter  20 value 92.980755
iter  30 value 91.651177
final  value 91.651099 
converged
Fitting Repeat 2 

# weights:  507
initial  value 102.709116 
final  value 94.484210 
converged
Fitting Repeat 3 

# weights:  507
initial  value 109.893605 
iter  10 value 94.487218
iter  20 value 94.484217
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 138.656673 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.175720 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.999051 
iter  10 value 94.449684
iter  20 value 90.344025
iter  30 value 84.805850
iter  40 value 83.530959
iter  50 value 82.019665
iter  60 value 81.544667
iter  70 value 81.436366
final  value 81.433048 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.680174 
iter  10 value 94.430659
iter  20 value 91.570058
iter  30 value 90.487593
iter  40 value 86.851575
iter  50 value 85.734962
iter  60 value 85.460368
iter  70 value 85.328125
iter  80 value 85.306929
final  value 85.303008 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.759980 
iter  10 value 93.790313
iter  20 value 87.671006
iter  30 value 86.738373
iter  40 value 83.861768
iter  50 value 83.492378
iter  60 value 82.865351
iter  70 value 82.861063
final  value 82.861044 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.878456 
iter  10 value 94.408614
iter  20 value 90.485910
iter  30 value 86.620890
iter  40 value 86.493417
iter  50 value 85.672734
iter  60 value 85.330504
final  value 85.330428 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.406671 
iter  10 value 92.871728
iter  20 value 88.429599
iter  30 value 84.281492
iter  40 value 83.944531
iter  50 value 83.016561
iter  60 value 82.861701
final  value 82.860834 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.939864 
iter  10 value 95.350709
iter  20 value 92.019524
iter  30 value 87.121674
iter  40 value 83.194695
iter  50 value 81.317425
iter  60 value 80.453726
iter  70 value 79.943930
iter  80 value 79.821293
iter  90 value 79.509897
iter 100 value 79.382603
final  value 79.382603 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.113972 
iter  10 value 93.688552
iter  20 value 93.184392
iter  30 value 91.302227
iter  40 value 90.113660
iter  50 value 90.011751
iter  60 value 89.872725
iter  70 value 82.654599
iter  80 value 82.142970
iter  90 value 80.804649
iter 100 value 80.720953
final  value 80.720953 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 125.775872 
iter  10 value 94.507205
iter  20 value 86.752280
iter  30 value 86.004837
iter  40 value 84.875779
iter  50 value 84.443403
iter  60 value 84.193229
iter  70 value 83.300290
iter  80 value 81.273621
iter  90 value 80.534059
iter 100 value 79.779653
final  value 79.779653 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 104.948293 
iter  10 value 94.457108
iter  20 value 90.351636
iter  30 value 85.729539
iter  40 value 84.579758
iter  50 value 83.164768
iter  60 value 82.214058
iter  70 value 81.667940
iter  80 value 81.300704
iter  90 value 80.398660
iter 100 value 79.983930
final  value 79.983930 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.826211 
iter  10 value 94.478131
iter  20 value 94.248689
iter  30 value 92.111248
iter  40 value 90.024943
iter  50 value 89.569017
iter  60 value 84.283437
iter  70 value 83.856662
iter  80 value 83.292493
iter  90 value 82.946384
iter 100 value 82.495612
final  value 82.495612 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 110.032359 
iter  10 value 94.562698
iter  20 value 86.849451
iter  30 value 82.478078
iter  40 value 80.580923
iter  50 value 79.727107
iter  60 value 79.450636
iter  70 value 79.267862
iter  80 value 79.201654
iter  90 value 79.116751
iter 100 value 79.057981
final  value 79.057981 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 116.047125 
iter  10 value 94.235576
iter  20 value 89.811095
iter  30 value 87.230201
iter  40 value 86.696342
iter  50 value 86.123987
iter  60 value 85.594543
iter  70 value 83.241241
iter  80 value 82.153201
iter  90 value 81.717558
iter 100 value 80.667918
final  value 80.667918 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.389412 
iter  10 value 94.854515
iter  20 value 92.597479
iter  30 value 85.621532
iter  40 value 83.285551
iter  50 value 82.762047
iter  60 value 82.198356
iter  70 value 81.908425
iter  80 value 81.141291
iter  90 value 80.982250
iter 100 value 80.893776
final  value 80.893776 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.647886 
iter  10 value 95.185143
iter  20 value 94.610872
iter  30 value 87.516496
iter  40 value 87.328263
iter  50 value 86.890826
iter  60 value 84.792872
iter  70 value 83.490901
iter  80 value 81.782515
iter  90 value 80.544374
iter 100 value 80.170507
final  value 80.170507 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 152.400106 
iter  10 value 99.932767
iter  20 value 87.001237
iter  30 value 83.300947
iter  40 value 82.705644
iter  50 value 82.294746
iter  60 value 81.611182
iter  70 value 81.214324
iter  80 value 81.130428
iter  90 value 80.403277
iter 100 value 80.076277
final  value 80.076277 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.826117 
iter  10 value 94.485744
iter  20 value 94.481034
iter  30 value 86.857595
iter  40 value 84.291717
final  value 84.283883 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.253778 
final  value 94.485718 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.113834 
final  value 94.485892 
converged
Fitting Repeat 4 

# weights:  103
initial  value 115.600884 
final  value 94.485755 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.897189 
final  value 94.485924 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.473221 
iter  10 value 94.488841
iter  20 value 94.481030
iter  30 value 94.250098
iter  40 value 90.536878
iter  50 value 89.992226
iter  60 value 89.985799
iter  70 value 82.753777
iter  80 value 82.145229
iter  90 value 81.965346
iter 100 value 81.930824
final  value 81.930824 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 126.944913 
iter  10 value 94.493455
iter  20 value 94.488126
iter  30 value 94.395807
iter  40 value 90.933004
iter  50 value 90.777327
iter  60 value 90.752447
iter  70 value 90.749349
final  value 90.748431 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.751830 
iter  10 value 94.483359
iter  20 value 84.964676
iter  30 value 84.292492
iter  40 value 84.182848
iter  50 value 84.181252
iter  60 value 84.179142
iter  70 value 84.179011
iter  80 value 84.176284
iter  90 value 83.737200
iter 100 value 83.735719
final  value 83.735719 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.941869 
iter  10 value 94.471959
iter  20 value 94.308861
iter  30 value 88.702989
iter  40 value 87.542921
iter  50 value 87.539471
iter  60 value 86.921590
iter  70 value 86.872695
final  value 86.872528 
converged
Fitting Repeat 5 

# weights:  305
initial  value 109.637934 
iter  10 value 94.488936
iter  20 value 94.483500
iter  30 value 93.059692
iter  40 value 85.822782
iter  50 value 85.813372
iter  60 value 85.789512
iter  70 value 82.082680
iter  80 value 80.426251
iter  90 value 80.401224
iter 100 value 80.397024
final  value 80.397024 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 114.401855 
iter  10 value 89.683742
iter  20 value 85.220083
iter  30 value 81.346322
iter  40 value 80.932075
iter  50 value 80.843002
iter  60 value 80.593460
iter  70 value 80.541129
iter  80 value 80.483542
iter  90 value 80.459053
iter 100 value 80.455312
final  value 80.455312 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 108.362209 
iter  10 value 94.494443
iter  20 value 94.479491
iter  30 value 87.828224
iter  40 value 85.122364
iter  50 value 84.205791
iter  60 value 82.836997
iter  70 value 81.825047
iter  80 value 81.617299
iter  90 value 81.594763
iter 100 value 81.561080
final  value 81.561080 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 97.413083 
iter  10 value 90.099783
iter  20 value 89.864369
iter  30 value 89.863362
iter  40 value 88.917932
iter  50 value 88.909798
iter  60 value 88.908370
iter  70 value 88.908308
iter  80 value 88.745145
iter  90 value 85.090337
iter 100 value 81.774515
final  value 81.774515 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.643280 
iter  10 value 91.381353
iter  20 value 86.294589
iter  30 value 85.497630
iter  40 value 84.544810
iter  50 value 84.481631
iter  60 value 84.481228
iter  70 value 84.343209
iter  80 value 83.083670
iter  90 value 82.885589
iter 100 value 82.764273
final  value 82.764273 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 96.843827 
iter  10 value 94.487458
iter  20 value 94.157227
iter  30 value 86.728567
iter  40 value 84.524953
final  value 84.522619 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.340717 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.267883 
iter  10 value 93.915938
final  value 93.915746 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.162857 
final  value 93.915746 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.096489 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 110.322328 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 109.467397 
final  value 93.915746 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.451391 
iter  10 value 92.343311
iter  20 value 91.986319
iter  30 value 91.986053
final  value 91.986050 
converged
Fitting Repeat 3 

# weights:  305
initial  value 94.454507 
iter  10 value 93.672973
iter  10 value 93.672973
iter  10 value 93.672973
final  value 93.672973 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.962209 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.870671 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 111.795758 
iter  10 value 90.878640
iter  20 value 90.820582
final  value 90.820513 
converged
Fitting Repeat 2 

# weights:  507
initial  value 94.936393 
final  value 93.915746 
converged
Fitting Repeat 3 

# weights:  507
initial  value 96.330650 
iter  10 value 94.053756
final  value 94.052909 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.689350 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.439896 
final  value 93.915746 
converged
Fitting Repeat 1 

# weights:  103
initial  value 109.450160 
iter  10 value 93.979796
iter  20 value 93.614934
iter  30 value 91.583441
iter  40 value 91.210325
iter  50 value 91.098134
iter  60 value 85.664270
iter  70 value 85.077392
iter  80 value 82.797259
iter  90 value 82.612580
iter 100 value 82.224608
final  value 82.224608 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 104.117236 
iter  10 value 94.056957
iter  20 value 94.039388
iter  30 value 92.793338
iter  40 value 85.212240
iter  50 value 82.844095
iter  60 value 82.417507
iter  70 value 81.689100
iter  80 value 80.425205
iter  90 value 79.966892
iter 100 value 79.751177
final  value 79.751177 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 101.912984 
iter  10 value 94.052029
iter  20 value 93.846312
iter  30 value 93.726161
iter  40 value 85.203338
iter  50 value 82.427002
iter  60 value 82.382345
iter  70 value 82.228116
iter  80 value 81.748311
iter  90 value 80.797926
iter 100 value 80.271299
final  value 80.271299 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 99.210720 
iter  10 value 93.024583
iter  20 value 88.742890
iter  30 value 83.887276
iter  40 value 82.541990
iter  50 value 81.802798
iter  60 value 80.720330
iter  70 value 80.340302
final  value 80.339175 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.712546 
iter  10 value 93.950288
iter  20 value 86.943170
iter  30 value 85.314853
iter  40 value 84.603691
iter  50 value 83.652106
iter  60 value 83.587023
iter  70 value 83.578445
final  value 83.578264 
converged
Fitting Repeat 1 

# weights:  305
initial  value 106.768891 
iter  10 value 93.891339
iter  20 value 91.471859
iter  30 value 84.108144
iter  40 value 82.622368
iter  50 value 80.938826
iter  60 value 79.889862
iter  70 value 78.956030
iter  80 value 78.730408
iter  90 value 78.690896
iter 100 value 78.660097
final  value 78.660097 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.256803 
iter  10 value 93.899428
iter  20 value 85.306396
iter  30 value 84.264822
iter  40 value 82.721415
iter  50 value 82.329778
iter  60 value 81.561418
iter  70 value 81.291751
iter  80 value 81.073558
iter  90 value 81.048959
iter 100 value 80.945990
final  value 80.945990 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 111.814050 
iter  10 value 93.973004
iter  20 value 87.527936
iter  30 value 83.928474
iter  40 value 83.349642
iter  50 value 82.301583
iter  60 value 81.976275
iter  70 value 79.685014
iter  80 value 78.920292
iter  90 value 78.414554
iter 100 value 78.241588
final  value 78.241588 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.906793 
iter  10 value 93.960660
iter  20 value 88.311712
iter  30 value 83.267461
iter  40 value 82.366703
iter  50 value 81.998943
iter  60 value 80.657304
iter  70 value 80.039648
iter  80 value 79.535608
iter  90 value 79.400155
iter 100 value 78.939692
final  value 78.939692 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 106.586620 
iter  10 value 94.257571
iter  20 value 90.540770
iter  30 value 89.016364
iter  40 value 88.604503
iter  50 value 88.324184
iter  60 value 83.370646
iter  70 value 81.610899
iter  80 value 81.082557
iter  90 value 80.866652
iter 100 value 80.755780
final  value 80.755780 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 141.176829 
iter  10 value 97.003693
iter  20 value 86.087185
iter  30 value 82.922650
iter  40 value 82.535935
iter  50 value 80.636382
iter  60 value 79.181096
iter  70 value 78.690044
iter  80 value 78.667991
iter  90 value 78.661919
iter 100 value 78.624246
final  value 78.624246 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 121.202259 
iter  10 value 93.974911
iter  20 value 89.299621
iter  30 value 88.801924
iter  40 value 88.687874
iter  50 value 86.286131
iter  60 value 82.669747
iter  70 value 81.640501
iter  80 value 80.825635
iter  90 value 80.605901
iter 100 value 80.306238
final  value 80.306238 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.525317 
iter  10 value 87.288648
iter  20 value 84.939146
iter  30 value 81.682385
iter  40 value 81.054372
iter  50 value 80.599176
iter  60 value 80.293763
iter  70 value 80.129273
iter  80 value 79.980474
iter  90 value 79.744849
iter 100 value 79.428177
final  value 79.428177 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 129.613882 
iter  10 value 95.316727
iter  20 value 91.485409
iter  30 value 87.930252
iter  40 value 84.814320
iter  50 value 84.155589
iter  60 value 83.427054
iter  70 value 82.342780
iter  80 value 81.513183
iter  90 value 81.241899
iter 100 value 81.097807
final  value 81.097807 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 116.128372 
iter  10 value 94.101868
iter  20 value 86.458559
iter  30 value 85.783066
iter  40 value 85.128292
iter  50 value 82.674499
iter  60 value 79.881659
iter  70 value 79.334311
iter  80 value 79.198187
iter  90 value 78.845554
iter 100 value 78.676485
final  value 78.676485 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.998179 
final  value 94.054501 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.895490 
final  value 93.917377 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.553259 
final  value 93.917169 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.533063 
final  value 94.054277 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.035541 
final  value 94.054421 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.331341 
iter  10 value 94.076678
iter  20 value 89.650271
iter  30 value 86.198549
iter  40 value 86.183398
iter  50 value 85.896620
iter  60 value 84.527516
iter  70 value 84.510920
iter  80 value 84.493766
iter  90 value 81.126089
iter 100 value 78.726012
final  value 78.726012 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 133.343579 
iter  10 value 94.057316
iter  20 value 94.052961
iter  30 value 86.915836
iter  40 value 86.180070
iter  50 value 86.179647
iter  60 value 84.789133
iter  70 value 84.777671
iter  80 value 84.772571
final  value 84.772244 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.422230 
iter  10 value 89.178714
iter  20 value 83.566937
iter  30 value 83.547003
iter  40 value 83.545824
iter  50 value 83.422069
iter  60 value 81.423391
iter  70 value 81.413364
final  value 81.413280 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.770361 
iter  10 value 94.057615
iter  20 value 93.855184
iter  30 value 93.492165
iter  40 value 93.464474
final  value 93.464369 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.852900 
iter  10 value 94.057754
iter  20 value 94.053182
final  value 94.052930 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.209823 
iter  10 value 94.058784
iter  20 value 94.040897
iter  30 value 93.858976
iter  40 value 91.762765
iter  50 value 90.780583
iter  60 value 88.148530
iter  70 value 87.998595
iter  80 value 87.950360
iter  90 value 87.228391
iter 100 value 81.980294
final  value 81.980294 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 117.154214 
iter  10 value 93.380604
iter  20 value 93.375606
iter  30 value 93.093675
iter  40 value 89.083961
iter  50 value 88.275067
iter  60 value 87.957280
final  value 87.724509 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.035187 
iter  10 value 94.060915
iter  20 value 85.855938
final  value 83.432819 
converged
Fitting Repeat 4 

# weights:  507
initial  value 128.491541 
iter  10 value 94.061234
iter  20 value 94.052600
iter  30 value 90.183268
iter  40 value 84.814044
iter  50 value 84.564354
iter  60 value 83.348448
iter  70 value 81.983097
iter  80 value 81.888340
iter  90 value 81.887889
iter 100 value 81.762952
final  value 81.762952 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 108.832444 
iter  10 value 94.061632
iter  20 value 94.056721
iter  30 value 93.988724
iter  40 value 93.922282
iter  50 value 93.918314
iter  60 value 93.826170
iter  70 value 93.495290
iter  80 value 91.311907
iter  90 value 87.203816
iter 100 value 87.186644
final  value 87.186644 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.080552 
iter  10 value 91.145880
iter  20 value 91.145741
final  value 91.145730 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.163641 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.374206 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.593590 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.097837 
iter  10 value 92.732051
iter  20 value 92.731184
iter  20 value 92.731183
iter  20 value 92.731183
final  value 92.731183 
converged
Fitting Repeat 1 

# weights:  305
initial  value 109.968006 
final  value 94.483810 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.867683 
final  value 93.300000 
converged
Fitting Repeat 3 

# weights:  305
initial  value 104.595037 
final  value 93.299996 
converged
Fitting Repeat 4 

# weights:  305
initial  value 102.638857 
final  value 94.484210 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.702330 
iter  10 value 92.747588
iter  20 value 92.731198
final  value 92.731184 
converged
Fitting Repeat 1 

# weights:  507
initial  value 131.869886 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 124.976693 
iter  10 value 92.752750
iter  20 value 92.731202
final  value 92.731183 
converged
Fitting Repeat 3 

# weights:  507
initial  value 105.580127 
iter  10 value 93.105535
iter  20 value 90.159135
iter  30 value 90.070607
iter  40 value 90.068048
final  value 90.068030 
converged
Fitting Repeat 4 

# weights:  507
initial  value 108.881092 
iter  10 value 89.856641
iter  20 value 87.872797
final  value 87.853335 
converged
Fitting Repeat 5 

# weights:  507
initial  value 108.361820 
iter  10 value 92.755414
iter  20 value 92.731204
final  value 92.731183 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.954197 
iter  10 value 94.488546
iter  20 value 94.190393
iter  30 value 93.729812
iter  40 value 93.684383
iter  50 value 93.678059
iter  60 value 93.674558
iter  70 value 93.668382
iter  80 value 93.199872
iter  90 value 86.977753
iter 100 value 85.095606
final  value 85.095606 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 102.889943 
iter  10 value 94.468903
iter  20 value 93.873420
iter  30 value 93.517498
iter  40 value 93.230106
iter  50 value 87.684230
iter  60 value 83.449234
iter  70 value 82.920706
iter  80 value 82.565278
iter  90 value 82.534371
final  value 82.533437 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.801726 
iter  10 value 94.408780
iter  20 value 92.725722
iter  30 value 88.294148
iter  40 value 84.921168
iter  50 value 84.704949
iter  60 value 83.430312
iter  70 value 82.462516
iter  80 value 82.285661
iter  90 value 82.269931
final  value 82.269598 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.794398 
iter  10 value 94.479242
iter  20 value 85.543395
iter  30 value 84.114018
iter  40 value 83.607567
iter  50 value 83.380601
iter  60 value 82.626964
iter  70 value 82.293663
iter  80 value 82.269598
iter  80 value 82.269597
iter  80 value 82.269597
final  value 82.269597 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.513414 
iter  10 value 94.446596
iter  20 value 84.978202
iter  30 value 82.300783
iter  40 value 82.190308
iter  50 value 81.528251
iter  60 value 80.782821
iter  70 value 80.365687
iter  80 value 80.033869
iter  90 value 79.937582
final  value 79.937531 
converged
Fitting Repeat 1 

# weights:  305
initial  value 114.576503 
iter  10 value 94.439239
iter  20 value 87.796202
iter  30 value 86.382545
iter  40 value 82.209570
iter  50 value 81.499808
iter  60 value 80.371242
iter  70 value 79.149824
iter  80 value 78.929315
iter  90 value 78.530232
iter 100 value 78.376786
final  value 78.376786 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.723722 
iter  10 value 94.485699
iter  20 value 92.630924
iter  30 value 85.700462
iter  40 value 81.616466
iter  50 value 80.826786
iter  60 value 79.486944
iter  70 value 79.078636
iter  80 value 78.923179
iter  90 value 78.898669
iter 100 value 78.694990
final  value 78.694990 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 106.000344 
iter  10 value 93.266590
iter  20 value 93.082060
iter  30 value 89.459825
iter  40 value 85.897708
iter  50 value 85.051916
iter  60 value 83.655118
iter  70 value 82.592482
iter  80 value 82.388704
iter  90 value 82.327239
iter 100 value 81.205215
final  value 81.205215 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 112.788548 
iter  10 value 93.816519
iter  20 value 93.158124
iter  30 value 91.862775
iter  40 value 84.038026
iter  50 value 82.512030
iter  60 value 80.900439
iter  70 value 79.896069
iter  80 value 79.669309
iter  90 value 79.624774
iter 100 value 79.518104
final  value 79.518104 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.112488 
iter  10 value 93.242975
iter  20 value 92.051167
iter  30 value 84.191743
iter  40 value 81.483114
iter  50 value 80.968507
iter  60 value 80.139746
iter  70 value 79.727661
iter  80 value 79.486163
iter  90 value 79.282280
iter 100 value 79.144386
final  value 79.144386 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 102.950839 
iter  10 value 94.500675
iter  20 value 84.546124
iter  30 value 82.461186
iter  40 value 81.116056
iter  50 value 80.641460
iter  60 value 79.757533
iter  70 value 79.497870
iter  80 value 78.975280
iter  90 value 78.451764
iter 100 value 78.288851
final  value 78.288851 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 105.015738 
iter  10 value 94.871047
iter  20 value 93.092982
iter  30 value 86.058753
iter  40 value 84.929468
iter  50 value 81.260916
iter  60 value 79.769347
iter  70 value 79.089473
iter  80 value 78.699734
iter  90 value 78.591062
iter 100 value 78.563500
final  value 78.563500 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 110.760186 
iter  10 value 96.024350
iter  20 value 93.579515
iter  30 value 93.277311
iter  40 value 91.837310
iter  50 value 87.905805
iter  60 value 82.982841
iter  70 value 80.397818
iter  80 value 79.510310
iter  90 value 78.991637
iter 100 value 78.544177
final  value 78.544177 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 136.560342 
iter  10 value 100.318769
iter  20 value 94.605144
iter  30 value 91.200368
iter  40 value 85.176438
iter  50 value 83.219771
iter  60 value 81.368896
iter  70 value 80.846926
iter  80 value 80.605842
iter  90 value 80.349665
iter 100 value 80.043598
final  value 80.043598 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 119.985689 
iter  10 value 95.395189
iter  20 value 94.204578
iter  30 value 85.514812
iter  40 value 84.762999
iter  50 value 83.109961
iter  60 value 80.866359
iter  70 value 79.903175
iter  80 value 79.130736
iter  90 value 78.335263
iter 100 value 78.056836
final  value 78.056836 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.447799 
final  value 94.486040 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.214083 
iter  10 value 92.687899
iter  20 value 92.495454
iter  30 value 92.495297
final  value 92.493835 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.672054 
final  value 94.486038 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.462849 
iter  10 value 94.485868
iter  20 value 94.484216
final  value 94.484212 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.313736 
final  value 94.485492 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.514719 
iter  10 value 93.880424
iter  20 value 93.876568
iter  30 value 92.861334
iter  40 value 92.739634
iter  50 value 92.716930
iter  60 value 83.341405
iter  70 value 83.043693
iter  80 value 83.042368
final  value 83.042364 
converged
Fitting Repeat 2 

# weights:  305
initial  value 106.519671 
iter  10 value 94.489159
iter  20 value 94.412923
iter  30 value 92.742405
iter  40 value 92.739567
final  value 92.739502 
converged
Fitting Repeat 3 

# weights:  305
initial  value 115.883186 
iter  10 value 92.771127
iter  20 value 92.743257
iter  30 value 92.738519
iter  40 value 92.325269
iter  50 value 90.310400
iter  60 value 82.001675
iter  70 value 80.984753
iter  80 value 80.967162
iter  90 value 80.946185
final  value 80.945995 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.269528 
iter  10 value 92.748712
iter  20 value 92.742516
iter  30 value 83.631092
iter  40 value 82.147891
iter  50 value 82.104812
iter  60 value 82.101906
iter  70 value 81.406502
iter  80 value 81.400990
iter  90 value 81.294694
iter 100 value 81.212831
final  value 81.212831 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.921122 
iter  10 value 94.488941
iter  20 value 94.463720
iter  30 value 93.300629
final  value 93.300593 
converged
Fitting Repeat 1 

# weights:  507
initial  value 125.885689 
iter  10 value 83.379555
iter  20 value 81.705996
iter  30 value 81.705049
iter  40 value 81.367152
iter  50 value 81.059196
iter  60 value 81.051369
iter  70 value 81.051122
iter  80 value 81.050536
iter  90 value 81.049593
iter 100 value 81.049336
final  value 81.049336 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.839097 
iter  10 value 94.113381
iter  10 value 94.113381
final  value 94.113381 
converged
Fitting Repeat 3 

# weights:  507
initial  value 107.744263 
iter  10 value 94.492264
iter  20 value 94.325285
iter  30 value 84.870093
iter  40 value 82.566789
iter  50 value 78.048220
iter  60 value 77.552093
iter  70 value 77.528316
iter  80 value 77.470402
iter  90 value 77.207012
iter 100 value 77.054751
final  value 77.054751 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 106.067461 
iter  10 value 92.703821
iter  20 value 92.503468
iter  30 value 92.502289
iter  40 value 91.892510
iter  50 value 85.384260
iter  60 value 82.173112
iter  70 value 77.723981
iter  80 value 76.453587
iter  90 value 76.399879
iter 100 value 76.394853
final  value 76.394853 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 138.779993 
iter  10 value 92.768500
iter  20 value 92.651489
iter  30 value 92.484723
iter  40 value 92.214088
iter  50 value 92.211697
iter  60 value 92.208728
iter  70 value 92.208154
iter  80 value 90.421884
iter  90 value 84.922258
iter 100 value 77.893783
final  value 77.893783 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 106.424939 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.831224 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.643104 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.322691 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.724029 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 115.127293 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 104.881595 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 112.918964 
final  value 93.962011 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.999739 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 113.402378 
iter  10 value 93.870537
final  value 93.672973 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.993767 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.620217 
final  value 94.038251 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.814331 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  507
initial  value 110.094099 
final  value 93.688926 
converged
Fitting Repeat 5 

# weights:  507
initial  value 107.079393 
final  value 94.038251 
converged
Fitting Repeat 1 

# weights:  103
initial  value 102.413279 
iter  10 value 93.627466
iter  20 value 91.070386
iter  30 value 88.727167
iter  40 value 86.528070
iter  50 value 84.885812
iter  60 value 84.192716
iter  70 value 84.147893
iter  80 value 84.143433
final  value 84.143426 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.319013 
iter  10 value 94.056666
iter  20 value 93.811185
iter  30 value 93.506296
iter  40 value 93.502197
iter  50 value 93.500515
iter  60 value 88.132969
iter  70 value 85.397044
iter  80 value 85.161499
iter  90 value 85.138328
iter 100 value 84.745006
final  value 84.745006 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 99.377924 
iter  10 value 94.056842
iter  20 value 94.042435
iter  30 value 89.945293
iter  40 value 87.800176
iter  50 value 86.791992
iter  60 value 84.047036
iter  70 value 82.865561
iter  80 value 82.609542
iter  90 value 82.311655
iter 100 value 82.108524
final  value 82.108524 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 99.046680 
iter  10 value 94.051051
iter  20 value 94.042806
iter  30 value 94.042095
iter  40 value 93.667140
iter  50 value 88.492331
iter  60 value 87.579264
iter  70 value 87.068634
iter  80 value 85.510913
iter  90 value 84.399103
iter 100 value 84.324204
final  value 84.324204 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 97.193150 
iter  10 value 94.057018
iter  20 value 93.934607
iter  30 value 89.203557
iter  40 value 87.027236
iter  50 value 84.077019
iter  60 value 83.476813
iter  70 value 82.874398
iter  80 value 82.493072
iter  90 value 82.184850
iter 100 value 82.115101
final  value 82.115101 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.362455 
iter  10 value 94.264346
iter  20 value 94.073402
iter  30 value 94.032021
iter  40 value 93.385169
iter  50 value 88.386276
iter  60 value 87.456082
iter  70 value 84.927234
iter  80 value 83.051093
iter  90 value 82.236219
iter 100 value 82.138759
final  value 82.138759 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.615942 
iter  10 value 93.471825
iter  20 value 87.119300
iter  30 value 86.403256
iter  40 value 85.074017
iter  50 value 84.532977
iter  60 value 84.056002
iter  70 value 83.836609
iter  80 value 83.705240
iter  90 value 83.613226
iter 100 value 83.369906
final  value 83.369906 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 109.621754 
iter  10 value 94.382035
iter  20 value 93.940274
iter  30 value 88.575910
iter  40 value 87.790319
iter  50 value 87.504291
iter  60 value 86.903390
iter  70 value 86.859064
iter  80 value 86.414597
iter  90 value 82.412075
iter 100 value 81.768722
final  value 81.768722 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.597272 
iter  10 value 93.949387
iter  20 value 86.882585
iter  30 value 84.764365
iter  40 value 83.911950
iter  50 value 83.368634
iter  60 value 82.255138
iter  70 value 81.914689
iter  80 value 81.791317
iter  90 value 81.504123
iter 100 value 81.125069
final  value 81.125069 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 102.527790 
iter  10 value 92.860749
iter  20 value 91.514579
iter  30 value 90.156376
iter  40 value 88.298449
iter  50 value 87.496165
iter  60 value 87.253363
iter  70 value 84.633871
iter  80 value 83.207012
iter  90 value 82.481218
iter 100 value 82.221833
final  value 82.221833 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 119.670684 
iter  10 value 94.168237
iter  20 value 93.673577
iter  30 value 92.431703
iter  40 value 87.167602
iter  50 value 86.703317
iter  60 value 86.137236
iter  70 value 83.708786
iter  80 value 82.701282
iter  90 value 81.883718
iter 100 value 81.156463
final  value 81.156463 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 102.921919 
iter  10 value 95.185347
iter  20 value 94.104972
iter  30 value 88.763955
iter  40 value 88.058680
iter  50 value 87.431725
iter  60 value 84.609816
iter  70 value 83.293409
iter  80 value 82.700459
iter  90 value 82.362329
iter 100 value 82.252369
final  value 82.252369 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 134.964397 
iter  10 value 94.115818
iter  20 value 88.675667
iter  30 value 87.036037
iter  40 value 86.816906
iter  50 value 85.803709
iter  60 value 84.106135
iter  70 value 83.609912
iter  80 value 83.446591
iter  90 value 82.896507
iter 100 value 82.334849
final  value 82.334849 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.028887 
iter  10 value 93.923620
iter  20 value 86.628615
iter  30 value 85.430087
iter  40 value 83.201428
iter  50 value 82.755659
iter  60 value 82.362738
iter  70 value 81.694603
iter  80 value 80.888211
iter  90 value 80.752386
iter 100 value 80.619059
final  value 80.619059 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.432557 
iter  10 value 94.222135
iter  20 value 92.735110
iter  30 value 85.550735
iter  40 value 85.165961
iter  50 value 83.318607
iter  60 value 82.026516
iter  70 value 81.541273
iter  80 value 81.271118
iter  90 value 80.730642
iter 100 value 80.591975
final  value 80.591975 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.423502 
iter  10 value 94.104161
iter  20 value 94.096988
iter  30 value 94.057269
final  value 94.052914 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.677242 
final  value 94.039941 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.580789 
iter  10 value 94.091144
iter  20 value 94.087728
iter  30 value 94.054289
final  value 94.052917 
converged
Fitting Repeat 4 

# weights:  103
initial  value 119.726968 
final  value 94.039729 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.266154 
final  value 94.054456 
converged
Fitting Repeat 1 

# weights:  305
initial  value 97.384309 
iter  10 value 94.057748
iter  20 value 94.005543
iter  30 value 93.603056
iter  40 value 85.993066
iter  50 value 83.340112
iter  60 value 83.337241
final  value 83.337239 
converged
Fitting Repeat 2 

# weights:  305
initial  value 107.609629 
iter  10 value 94.042532
iter  20 value 94.038589
final  value 94.038583 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.133833 
iter  10 value 90.888808
iter  20 value 85.639968
iter  30 value 85.552946
iter  40 value 85.552581
iter  50 value 85.549705
iter  60 value 85.512401
iter  70 value 85.149663
iter  80 value 85.104742
iter  90 value 85.104480
iter 100 value 85.104362
final  value 85.104362 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 121.687287 
iter  10 value 94.055655
iter  20 value 93.882427
final  value 93.542931 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.801347 
iter  10 value 85.587664
iter  20 value 82.953947
iter  30 value 82.349906
iter  40 value 82.149599
iter  50 value 82.147729
iter  60 value 82.082775
iter  70 value 81.640603
iter  80 value 81.524120
iter  90 value 81.516851
iter 100 value 81.468497
final  value 81.468497 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 106.068368 
iter  10 value 94.046343
iter  20 value 93.909000
iter  30 value 85.498403
iter  40 value 83.789589
iter  50 value 83.499886
iter  60 value 83.497311
final  value 83.497200 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.061028 
iter  10 value 94.046536
iter  20 value 94.038302
iter  30 value 92.127260
iter  40 value 84.877700
iter  50 value 84.341769
iter  60 value 84.330934
final  value 84.330865 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.037381 
iter  10 value 93.531154
iter  20 value 91.926100
iter  30 value 91.672039
iter  40 value 82.647970
iter  50 value 82.218711
iter  60 value 82.213970
iter  70 value 82.086171
iter  80 value 81.015248
iter  90 value 80.444838
iter 100 value 80.399074
final  value 80.399074 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 97.021983 
iter  10 value 93.710480
iter  20 value 93.697052
iter  30 value 93.690237
iter  40 value 93.588762
iter  50 value 85.556907
iter  60 value 85.055203
iter  70 value 84.613689
iter  80 value 84.517909
iter  90 value 81.731510
iter 100 value 80.642917
final  value 80.642917 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.253661 
iter  10 value 94.060617
iter  20 value 92.479204
iter  30 value 89.550040
iter  40 value 86.230968
iter  50 value 85.857069
iter  60 value 84.513934
iter  70 value 84.484924
iter  80 value 82.879486
iter  90 value 82.467563
iter 100 value 81.551569
final  value 81.551569 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 119.910590 
iter  10 value 117.767359
iter  20 value 117.732829
final  value 117.728758 
converged
Fitting Repeat 2 

# weights:  507
initial  value 131.373200 
iter  10 value 117.898357
iter  20 value 117.778966
iter  30 value 117.735952
final  value 117.729881 
converged
Fitting Repeat 3 

# weights:  507
initial  value 121.001325 
iter  10 value 117.525669
iter  20 value 117.506452
iter  30 value 117.503966
iter  40 value 117.463199
iter  50 value 117.460032
iter  60 value 115.928555
iter  70 value 109.546454
iter  80 value 106.782382
iter  90 value 106.761268
iter 100 value 106.756083
final  value 106.756083 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 126.155095 
final  value 117.898615 
converged
Fitting Repeat 5 

# weights:  507
initial  value 145.235250 
iter  10 value 117.903892
iter  20 value 117.891477
iter  30 value 116.169314
iter  40 value 107.414732
iter  50 value 105.755534
iter  60 value 104.127518
iter  70 value 103.337852
iter  80 value 103.331324
iter  90 value 103.327955
final  value 103.326219 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Thu Feb  6 02:36:53 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  43.85    1.45  141.35 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod35.16 1.8937.07
FreqInteractors0.310.000.34
calculateAAC0.050.020.06
calculateAutocor0.500.100.61
calculateCTDC0.090.020.11
calculateCTDD0.800.080.89
calculateCTDT0.330.010.34
calculateCTriad0.400.000.41
calculateDC0.130.020.14
calculateF0.360.060.42
calculateKSAAP0.150.000.16
calculateQD_Sm2.440.242.67
calculateTC1.750.121.89
calculateTC_Sm0.280.020.30
corr_plot34.47 1.5336.04
enrichfindP 0.78 0.0912.74
enrichfind_hp0.080.021.11
enrichplot0.360.010.37
filter_missing_values000
getFASTA0.030.002.35
getHPI000
get_negativePPI000
get_positivePPI000
impute_missing_data000
plotPPI0.090.020.10
pred_ensembel13.24 0.3312.07
var_imp33.94 0.9834.93