Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-03-17 12:10 -0400 (Mon, 17 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4756 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4487 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4514 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4441 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4399 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-03-14 21:38:14 -0400 (Fri, 14 Mar 2025) |
EndedAt: 2025-03-14 21:45:04 -0400 (Fri, 14 Mar 2025) |
EllapsedTime: 409.7 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.3 (2025-02-28) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed corr_plot 51.714 2.207 54.092 var_imp 51.413 2.108 53.696 FSmethod 51.417 2.002 53.600 pred_ensembel 16.919 0.535 15.409 enrichfindP 0.495 0.075 10.976 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 97.290610 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.606151 final value 94.021262 converged Fitting Repeat 3 # weights: 103 initial value 97.036323 final value 93.653870 converged Fitting Repeat 4 # weights: 103 initial value 100.049645 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.659943 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 107.144527 iter 10 value 93.391909 final value 93.391892 converged Fitting Repeat 2 # weights: 305 initial value 102.018574 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 99.372812 final value 94.052911 converged Fitting Repeat 4 # weights: 305 initial value 113.233048 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 97.181472 final value 93.391892 converged Fitting Repeat 1 # weights: 507 initial value 107.015984 final value 94.052911 converged Fitting Repeat 2 # weights: 507 initial value 96.203337 final value 92.974286 converged Fitting Repeat 3 # weights: 507 initial value 100.562831 iter 10 value 94.055882 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 102.571516 iter 10 value 94.032328 iter 10 value 94.032328 iter 10 value 94.032328 final value 94.032328 converged Fitting Repeat 5 # weights: 507 initial value 111.150445 iter 10 value 93.391917 final value 93.391892 converged Fitting Repeat 1 # weights: 103 initial value 105.674589 iter 10 value 94.162045 iter 20 value 94.056814 iter 30 value 93.597898 iter 40 value 93.279211 iter 50 value 93.229492 iter 60 value 93.189112 iter 70 value 89.964339 iter 80 value 88.904151 iter 90 value 88.798869 iter 100 value 86.700837 final value 86.700837 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 115.727120 iter 10 value 94.026704 iter 20 value 89.363385 iter 30 value 85.825059 iter 40 value 85.220597 iter 50 value 85.081856 iter 60 value 85.060357 final value 85.060320 converged Fitting Repeat 3 # weights: 103 initial value 101.473436 iter 10 value 93.995357 iter 20 value 93.459332 iter 30 value 88.110975 iter 40 value 86.391865 iter 50 value 86.349792 iter 60 value 86.272655 iter 70 value 85.281708 iter 80 value 85.166858 iter 90 value 85.065367 iter 100 value 85.060321 final value 85.060321 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.552945 iter 10 value 93.871410 iter 20 value 89.619983 iter 30 value 88.386718 iter 40 value 87.925135 iter 50 value 86.594914 iter 60 value 86.401311 iter 70 value 86.393955 final value 86.393946 converged Fitting Repeat 5 # weights: 103 initial value 97.780562 iter 10 value 94.056566 iter 20 value 88.153570 iter 30 value 85.561634 iter 40 value 85.240179 iter 50 value 85.145094 iter 60 value 85.062290 iter 70 value 85.060321 iter 70 value 85.060320 iter 70 value 85.060320 final value 85.060320 converged Fitting Repeat 1 # weights: 305 initial value 101.699598 iter 10 value 94.058428 iter 20 value 93.600214 iter 30 value 93.376860 iter 40 value 88.257344 iter 50 value 86.698411 iter 60 value 85.344294 iter 70 value 83.735320 iter 80 value 83.409247 iter 90 value 82.736162 iter 100 value 82.102322 final value 82.102322 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.200193 iter 10 value 89.300284 iter 20 value 88.115300 iter 30 value 88.007842 iter 40 value 87.297001 iter 50 value 84.282987 iter 60 value 82.255956 iter 70 value 81.591912 iter 80 value 81.545784 iter 90 value 81.476454 iter 100 value 81.296328 final value 81.296328 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.494563 iter 10 value 93.682292 iter 20 value 85.855510 iter 30 value 85.257930 iter 40 value 85.013947 iter 50 value 84.845645 iter 60 value 84.677483 iter 70 value 84.185728 iter 80 value 82.905940 iter 90 value 81.749767 iter 100 value 81.308099 final value 81.308099 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.112360 iter 10 value 89.164843 iter 20 value 87.450508 iter 30 value 87.073348 iter 40 value 86.317618 iter 50 value 85.525673 iter 60 value 83.497224 iter 70 value 82.301625 iter 80 value 81.480912 iter 90 value 81.074216 iter 100 value 80.957855 final value 80.957855 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.615194 iter 10 value 94.104098 iter 20 value 88.616180 iter 30 value 85.306989 iter 40 value 84.571405 iter 50 value 84.131020 iter 60 value 83.978385 iter 70 value 82.317232 iter 80 value 81.801121 iter 90 value 81.679320 iter 100 value 81.532618 final value 81.532618 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 134.856521 iter 10 value 94.868239 iter 20 value 93.414976 iter 30 value 91.146877 iter 40 value 85.995500 iter 50 value 83.623051 iter 60 value 82.891380 iter 70 value 82.093149 iter 80 value 81.379078 iter 90 value 81.247333 iter 100 value 81.203628 final value 81.203628 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.702902 iter 10 value 95.332618 iter 20 value 92.471469 iter 30 value 84.036992 iter 40 value 82.357302 iter 50 value 81.692216 iter 60 value 81.536254 iter 70 value 81.315786 iter 80 value 80.989468 iter 90 value 80.794400 iter 100 value 80.527739 final value 80.527739 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.876965 iter 10 value 97.034833 iter 20 value 90.800621 iter 30 value 88.028453 iter 40 value 86.275469 iter 50 value 82.224452 iter 60 value 81.272205 iter 70 value 81.174065 iter 80 value 80.981995 iter 90 value 80.885824 iter 100 value 80.848824 final value 80.848824 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 130.562756 iter 10 value 92.432105 iter 20 value 83.782782 iter 30 value 82.703400 iter 40 value 81.762254 iter 50 value 81.381943 iter 60 value 81.129227 iter 70 value 80.958719 iter 80 value 80.823904 iter 90 value 80.567785 iter 100 value 80.442256 final value 80.442256 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.329478 iter 10 value 94.539008 iter 20 value 92.323318 iter 30 value 87.163828 iter 40 value 84.027407 iter 50 value 82.604364 iter 60 value 82.216984 iter 70 value 82.124134 iter 80 value 82.049627 iter 90 value 81.962674 iter 100 value 81.512206 final value 81.512206 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.716240 final value 94.054597 converged Fitting Repeat 2 # weights: 103 initial value 96.292272 final value 94.054331 converged Fitting Repeat 3 # weights: 103 initial value 102.244205 final value 94.054273 converged Fitting Repeat 4 # weights: 103 initial value 100.102186 iter 10 value 94.054546 iter 20 value 94.037403 iter 30 value 93.392268 iter 30 value 93.392267 iter 30 value 93.392267 final value 93.392267 converged Fitting Repeat 5 # weights: 103 initial value 99.799145 final value 94.054807 converged Fitting Repeat 1 # weights: 305 initial value 94.071327 iter 10 value 93.397540 iter 20 value 93.394764 final value 93.392237 converged Fitting Repeat 2 # weights: 305 initial value 99.106049 iter 10 value 94.057556 iter 20 value 93.899640 iter 30 value 91.759998 iter 40 value 91.714507 final value 91.703684 converged Fitting Repeat 3 # weights: 305 initial value 94.796940 iter 10 value 89.236390 iter 20 value 89.134171 iter 30 value 89.093175 iter 40 value 89.091847 final value 89.091084 converged Fitting Repeat 4 # weights: 305 initial value 106.701123 iter 10 value 93.108174 iter 20 value 93.023293 final value 92.976146 converged Fitting Repeat 5 # weights: 305 initial value 109.433172 iter 10 value 89.322488 iter 20 value 88.212732 iter 30 value 88.211742 iter 40 value 88.210605 iter 50 value 88.206919 iter 60 value 86.953733 final value 86.949033 converged Fitting Repeat 1 # weights: 507 initial value 111.206483 iter 10 value 92.485665 iter 20 value 92.192279 iter 30 value 92.188383 iter 40 value 92.182251 iter 50 value 92.180843 iter 60 value 92.179165 iter 70 value 92.177566 iter 80 value 92.177438 iter 90 value 92.024370 iter 100 value 87.283473 final value 87.283473 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.317213 iter 10 value 92.188210 iter 20 value 92.184331 iter 30 value 87.183984 iter 40 value 86.800400 iter 50 value 85.795667 iter 60 value 83.683543 iter 70 value 82.906394 iter 80 value 82.719448 iter 90 value 82.593038 iter 100 value 82.404072 final value 82.404072 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 100.427044 iter 10 value 91.059539 iter 20 value 88.588896 iter 30 value 87.764324 iter 40 value 86.678559 final value 86.676904 converged Fitting Repeat 4 # weights: 507 initial value 121.556688 iter 10 value 94.061095 iter 20 value 92.443057 iter 30 value 91.142647 iter 40 value 91.137378 iter 50 value 91.137026 iter 60 value 91.134307 iter 70 value 91.130526 iter 80 value 91.130228 iter 90 value 88.536722 iter 100 value 84.517862 final value 84.517862 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 127.231950 iter 10 value 93.999884 iter 20 value 93.724091 iter 30 value 92.060625 iter 40 value 90.297105 iter 50 value 89.994126 iter 60 value 89.900306 iter 70 value 89.484530 iter 80 value 88.708667 iter 90 value 88.577602 iter 100 value 87.908896 final value 87.908896 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.713474 final value 94.354396 converged Fitting Repeat 2 # weights: 103 initial value 105.865179 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.443692 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.345465 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.508676 iter 10 value 93.991593 final value 93.976398 converged Fitting Repeat 1 # weights: 305 initial value 104.560195 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.271841 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 114.282170 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 102.614518 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.981272 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 102.887381 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 120.276757 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 107.166569 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 117.583697 final value 94.354396 converged Fitting Repeat 5 # weights: 507 initial value 117.231781 final value 94.461538 converged Fitting Repeat 1 # weights: 103 initial value 99.124620 iter 10 value 94.096056 iter 20 value 85.332051 iter 30 value 83.778769 iter 40 value 82.168671 iter 50 value 81.817623 iter 60 value 81.639159 final value 81.638082 converged Fitting Repeat 2 # weights: 103 initial value 101.460001 iter 10 value 94.489370 iter 20 value 94.142533 iter 30 value 94.047319 iter 40 value 94.017458 iter 50 value 86.914064 iter 60 value 86.359584 iter 70 value 85.360808 iter 80 value 85.264328 iter 90 value 85.095506 iter 100 value 85.081056 final value 85.081056 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.295279 iter 10 value 93.757471 iter 20 value 86.961937 iter 30 value 86.301987 iter 40 value 85.413012 iter 50 value 85.098138 iter 60 value 85.081053 final value 85.081049 converged Fitting Repeat 4 # weights: 103 initial value 97.572491 iter 10 value 94.723591 iter 20 value 94.489257 final value 94.486427 converged Fitting Repeat 5 # weights: 103 initial value 105.169955 iter 10 value 94.490947 iter 20 value 86.771308 iter 30 value 85.735915 iter 40 value 85.440287 iter 50 value 85.145254 iter 60 value 85.091525 iter 70 value 85.081590 final value 85.081049 converged Fitting Repeat 1 # weights: 305 initial value 104.072879 iter 10 value 94.522625 iter 20 value 93.314383 iter 30 value 87.741056 iter 40 value 86.077249 iter 50 value 84.300416 iter 60 value 82.857715 iter 70 value 82.155940 iter 80 value 81.959421 iter 90 value 81.900009 iter 100 value 81.853248 final value 81.853248 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 115.171906 iter 10 value 93.975426 iter 20 value 88.279339 iter 30 value 85.624027 iter 40 value 85.290979 iter 50 value 84.782451 iter 60 value 84.636347 iter 70 value 84.515436 iter 80 value 83.313288 iter 90 value 82.942407 iter 100 value 82.572073 final value 82.572073 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.490099 iter 10 value 96.580132 iter 20 value 94.609894 iter 30 value 87.414881 iter 40 value 85.549739 iter 50 value 85.281544 iter 60 value 84.819727 iter 70 value 84.688715 iter 80 value 83.543219 iter 90 value 82.622578 iter 100 value 80.303876 final value 80.303876 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.797809 iter 10 value 94.425943 iter 20 value 89.281797 iter 30 value 87.784422 iter 40 value 87.310545 iter 50 value 86.815142 iter 60 value 84.010616 iter 70 value 81.674076 iter 80 value 81.129014 iter 90 value 80.964993 iter 100 value 80.797543 final value 80.797543 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.909584 iter 10 value 94.307755 iter 20 value 88.674681 iter 30 value 87.066412 iter 40 value 84.097575 iter 50 value 83.030959 iter 60 value 82.335596 iter 70 value 82.056082 iter 80 value 81.680917 iter 90 value 81.408405 iter 100 value 81.242377 final value 81.242377 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.820788 iter 10 value 94.240438 iter 20 value 85.198101 iter 30 value 83.890113 iter 40 value 82.044684 iter 50 value 81.560821 iter 60 value 81.142812 iter 70 value 80.880035 iter 80 value 80.417834 iter 90 value 80.290248 iter 100 value 80.181989 final value 80.181989 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.603457 iter 10 value 94.628700 iter 20 value 91.132910 iter 30 value 86.957784 iter 40 value 84.416333 iter 50 value 82.336419 iter 60 value 82.074059 iter 70 value 81.907542 iter 80 value 81.176290 iter 90 value 80.804769 iter 100 value 80.620916 final value 80.620916 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 126.831772 iter 10 value 95.315526 iter 20 value 92.223410 iter 30 value 86.785448 iter 40 value 85.132921 iter 50 value 84.940170 iter 60 value 84.836318 iter 70 value 84.729063 iter 80 value 84.263997 iter 90 value 81.575892 iter 100 value 80.472195 final value 80.472195 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 129.965527 iter 10 value 94.787629 iter 20 value 92.834228 iter 30 value 84.903083 iter 40 value 82.753634 iter 50 value 82.261210 iter 60 value 82.130786 iter 70 value 81.845420 iter 80 value 80.978166 iter 90 value 80.254572 iter 100 value 79.665535 final value 79.665535 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.499769 iter 10 value 94.500823 iter 20 value 93.897652 iter 30 value 87.307430 iter 40 value 84.063815 iter 50 value 82.535625 iter 60 value 80.904363 iter 70 value 80.825752 iter 80 value 80.310569 iter 90 value 79.917476 iter 100 value 79.861532 final value 79.861532 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.744027 iter 10 value 94.485988 final value 94.484215 converged Fitting Repeat 2 # weights: 103 initial value 101.876421 iter 10 value 94.485984 iter 20 value 94.484295 iter 30 value 91.769553 iter 40 value 91.086404 iter 50 value 91.085994 iter 60 value 90.722126 iter 70 value 90.721758 iter 80 value 83.435321 iter 90 value 81.518047 final value 81.484505 converged Fitting Repeat 3 # weights: 103 initial value 95.301060 final value 94.486123 converged Fitting Repeat 4 # weights: 103 initial value 97.381962 final value 94.485545 converged Fitting Repeat 5 # weights: 103 initial value 109.865530 iter 10 value 94.507833 iter 20 value 94.501473 final value 94.484511 converged Fitting Repeat 1 # weights: 305 initial value 101.651485 iter 10 value 94.359284 iter 20 value 94.356473 iter 30 value 94.035497 iter 40 value 93.941468 iter 50 value 93.939710 iter 60 value 93.919628 final value 93.913416 converged Fitting Repeat 2 # weights: 305 initial value 98.989592 iter 10 value 94.219274 iter 20 value 94.211521 iter 30 value 94.209291 final value 94.208857 converged Fitting Repeat 3 # weights: 305 initial value 98.324304 iter 10 value 94.488644 iter 20 value 94.084799 iter 30 value 91.786300 iter 40 value 89.679492 iter 50 value 85.916981 iter 60 value 82.051205 iter 70 value 81.472966 iter 80 value 81.435305 iter 90 value 81.434294 iter 100 value 81.433792 final value 81.433792 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.091485 iter 10 value 94.360708 iter 20 value 94.198444 iter 30 value 84.702437 iter 40 value 83.837098 iter 50 value 83.785544 iter 60 value 83.781560 iter 70 value 83.781289 iter 80 value 83.780745 iter 90 value 83.780313 iter 100 value 83.779831 final value 83.779831 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.291278 iter 10 value 84.195455 iter 20 value 81.345250 iter 30 value 80.923918 iter 40 value 80.907810 iter 50 value 80.586789 iter 60 value 80.586332 iter 70 value 80.575688 iter 80 value 80.501090 iter 90 value 79.618277 iter 100 value 79.271615 final value 79.271615 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.220798 iter 10 value 94.362678 iter 20 value 94.057902 iter 30 value 88.848221 iter 40 value 87.223515 iter 50 value 86.935275 final value 86.933456 converged Fitting Repeat 2 # weights: 507 initial value 103.718434 iter 10 value 94.491991 iter 20 value 94.247127 iter 30 value 86.083300 iter 40 value 86.068076 iter 50 value 86.066453 final value 86.066401 converged Fitting Repeat 3 # weights: 507 initial value 100.474480 iter 10 value 94.491385 iter 20 value 94.482720 iter 30 value 94.361498 iter 40 value 94.043253 iter 50 value 94.004226 iter 60 value 94.003715 iter 70 value 93.987697 final value 93.977030 converged Fitting Repeat 4 # weights: 507 initial value 95.665859 iter 10 value 94.010312 iter 20 value 93.992522 iter 30 value 92.917369 iter 40 value 81.728024 iter 50 value 81.604317 iter 60 value 80.249424 iter 70 value 79.854530 iter 80 value 79.702066 iter 90 value 79.680910 iter 100 value 79.655412 final value 79.655412 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.247184 iter 10 value 94.492424 iter 20 value 94.409426 iter 30 value 93.994539 iter 40 value 84.706161 iter 50 value 81.295603 iter 60 value 81.139548 iter 70 value 81.073403 iter 80 value 78.861368 iter 90 value 78.069797 iter 100 value 78.031539 final value 78.031539 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.261852 iter 10 value 92.945420 final value 92.945355 converged Fitting Repeat 2 # weights: 103 initial value 96.275962 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.011769 iter 10 value 92.945356 iter 10 value 92.945355 iter 10 value 92.945355 final value 92.945355 converged Fitting Repeat 4 # weights: 103 initial value 95.889664 iter 10 value 92.945363 final value 92.945355 converged Fitting Repeat 5 # weights: 103 initial value 94.690842 iter 10 value 92.954142 final value 92.945355 converged Fitting Repeat 1 # weights: 305 initial value 99.293651 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 114.347356 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 100.960698 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 125.952023 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 119.803711 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 103.161392 iter 10 value 90.092737 iter 20 value 87.821658 final value 87.821657 converged Fitting Repeat 2 # weights: 507 initial value 116.370621 iter 10 value 94.042023 final value 94.042012 converged Fitting Repeat 3 # weights: 507 initial value 121.530469 iter 10 value 92.823305 final value 92.694915 converged Fitting Repeat 4 # weights: 507 initial value 99.359708 final value 92.945356 converged Fitting Repeat 5 # weights: 507 initial value 101.337539 iter 10 value 94.023994 iter 20 value 94.022600 iter 20 value 94.022599 iter 20 value 94.022599 final value 94.022599 converged Fitting Repeat 1 # weights: 103 initial value 98.414895 iter 10 value 94.056718 iter 20 value 93.099388 iter 30 value 92.995735 iter 40 value 91.138528 iter 50 value 81.685965 iter 60 value 81.117653 iter 70 value 80.983583 iter 80 value 80.609720 iter 90 value 80.493063 final value 80.493000 converged Fitting Repeat 2 # weights: 103 initial value 96.178419 iter 10 value 93.888528 iter 20 value 89.151197 iter 30 value 87.376776 iter 40 value 86.916174 iter 50 value 84.582986 iter 60 value 81.318140 iter 70 value 80.382862 iter 80 value 79.955095 iter 90 value 79.393160 iter 100 value 77.882629 final value 77.882629 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.242658 iter 10 value 94.132861 iter 20 value 94.044778 iter 30 value 93.968342 iter 40 value 93.802324 iter 50 value 93.744300 iter 60 value 93.315328 iter 70 value 92.989902 iter 80 value 91.956589 iter 90 value 88.078820 iter 100 value 86.354007 final value 86.354007 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.204123 iter 10 value 94.063299 iter 20 value 93.758124 iter 30 value 93.386390 iter 40 value 93.229118 iter 50 value 87.937142 iter 60 value 87.234570 iter 70 value 86.714125 iter 80 value 82.706425 iter 90 value 80.760499 iter 100 value 80.560133 final value 80.560133 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.072494 iter 10 value 86.326857 iter 20 value 81.942145 iter 30 value 81.232477 iter 40 value 81.042598 iter 50 value 78.567214 iter 60 value 77.343804 iter 70 value 77.159437 iter 80 value 77.153228 final value 77.153184 converged Fitting Repeat 1 # weights: 305 initial value 102.771519 iter 10 value 93.775040 iter 20 value 90.208165 iter 30 value 87.567286 iter 40 value 86.779986 iter 50 value 82.011241 iter 60 value 80.245433 iter 70 value 80.052000 iter 80 value 77.669764 iter 90 value 76.710465 iter 100 value 76.556910 final value 76.556910 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.870628 iter 10 value 93.625526 iter 20 value 85.323399 iter 30 value 83.090807 iter 40 value 82.377967 iter 50 value 81.225012 iter 60 value 79.222440 iter 70 value 78.169390 iter 80 value 77.277594 iter 90 value 76.817321 iter 100 value 76.612337 final value 76.612337 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.922395 iter 10 value 90.789524 iter 20 value 79.407422 iter 30 value 77.660938 iter 40 value 76.480615 iter 50 value 76.307138 iter 60 value 76.126115 iter 70 value 75.962116 iter 80 value 75.931719 iter 90 value 75.912804 iter 100 value 75.898363 final value 75.898363 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.641067 iter 10 value 94.386818 iter 20 value 93.954802 iter 30 value 92.020671 iter 40 value 80.547221 iter 50 value 80.370426 iter 60 value 80.325391 iter 70 value 77.796632 iter 80 value 76.728849 iter 90 value 76.499593 iter 100 value 76.428815 final value 76.428815 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.390606 iter 10 value 94.286874 iter 20 value 93.704858 iter 30 value 83.442974 iter 40 value 82.871343 iter 50 value 79.267691 iter 60 value 77.802033 iter 70 value 77.493457 iter 80 value 77.094856 iter 90 value 76.189574 iter 100 value 76.055242 final value 76.055242 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 132.924645 iter 10 value 94.412882 iter 20 value 84.479464 iter 30 value 83.148732 iter 40 value 80.924971 iter 50 value 80.089213 iter 60 value 78.046358 iter 70 value 77.056379 iter 80 value 76.327913 iter 90 value 76.134671 iter 100 value 75.942682 final value 75.942682 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.053472 iter 10 value 94.968078 iter 20 value 92.413166 iter 30 value 82.507036 iter 40 value 81.213420 iter 50 value 77.988991 iter 60 value 77.040788 iter 70 value 76.882962 iter 80 value 76.766842 iter 90 value 76.381932 iter 100 value 76.103163 final value 76.103163 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.549456 iter 10 value 94.568658 iter 20 value 93.106786 iter 30 value 81.034253 iter 40 value 78.237246 iter 50 value 77.402943 iter 60 value 77.179917 iter 70 value 76.581665 iter 80 value 76.020494 iter 90 value 75.739487 iter 100 value 75.329640 final value 75.329640 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 133.140418 iter 10 value 92.275243 iter 20 value 87.145641 iter 30 value 86.323453 iter 40 value 81.234304 iter 50 value 77.843196 iter 60 value 77.311915 iter 70 value 77.113508 iter 80 value 76.480771 iter 90 value 76.296105 iter 100 value 76.002833 final value 76.002833 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.811264 iter 10 value 91.272127 iter 20 value 81.418343 iter 30 value 80.294555 iter 40 value 79.298178 iter 50 value 78.377989 iter 60 value 76.904382 iter 70 value 76.007978 iter 80 value 75.760585 iter 90 value 75.522552 iter 100 value 75.489137 final value 75.489137 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.260780 iter 10 value 92.947673 iter 20 value 92.946153 iter 30 value 92.328147 iter 40 value 84.937912 final value 84.934200 converged Fitting Repeat 2 # weights: 103 initial value 98.552723 iter 10 value 93.062085 final value 92.947618 converged Fitting Repeat 3 # weights: 103 initial value 96.074044 iter 10 value 83.337483 iter 20 value 80.796891 iter 30 value 80.312479 iter 40 value 79.226086 iter 50 value 79.219441 iter 60 value 79.185711 iter 70 value 79.166820 iter 80 value 79.166148 iter 90 value 79.165550 iter 100 value 79.164531 final value 79.164531 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.942983 final value 94.054599 converged Fitting Repeat 5 # weights: 103 initial value 97.549244 iter 10 value 91.296955 iter 20 value 91.283301 iter 30 value 91.281858 iter 40 value 89.736966 iter 50 value 89.723499 iter 60 value 89.723271 iter 70 value 89.722995 iter 80 value 89.722817 iter 90 value 89.722400 final value 89.722221 converged Fitting Repeat 1 # weights: 305 initial value 96.350152 iter 10 value 89.912645 iter 20 value 89.753072 iter 30 value 89.728494 iter 40 value 89.601275 iter 50 value 88.146810 iter 60 value 87.558891 iter 70 value 77.799392 iter 80 value 75.490274 iter 90 value 75.061989 iter 100 value 75.007950 final value 75.007950 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.947642 iter 10 value 94.056781 iter 20 value 93.420352 iter 30 value 82.441919 iter 40 value 82.331016 iter 50 value 82.327850 iter 60 value 82.324632 iter 70 value 80.891611 iter 80 value 79.435769 iter 90 value 76.714416 iter 100 value 76.153118 final value 76.153118 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.467497 iter 10 value 94.057273 iter 20 value 94.038006 iter 30 value 93.314778 iter 40 value 92.607754 iter 50 value 92.272997 final value 92.272754 converged Fitting Repeat 4 # weights: 305 initial value 94.328278 iter 10 value 93.936335 iter 20 value 91.560275 iter 30 value 83.787895 iter 40 value 83.508679 iter 50 value 83.473861 iter 60 value 82.809541 final value 82.798093 converged Fitting Repeat 5 # weights: 305 initial value 102.175363 iter 10 value 94.058025 iter 20 value 92.235564 iter 30 value 80.578774 iter 40 value 79.826420 iter 50 value 79.420831 iter 60 value 79.418890 final value 79.418373 converged Fitting Repeat 1 # weights: 507 initial value 106.723019 iter 10 value 94.061221 iter 20 value 94.052958 iter 30 value 92.946365 iter 30 value 92.946364 final value 92.946364 converged Fitting Repeat 2 # weights: 507 initial value 95.085096 iter 10 value 91.263573 iter 20 value 91.258546 iter 30 value 91.254478 iter 40 value 91.254335 iter 50 value 91.225754 iter 60 value 90.037940 iter 70 value 89.973584 final value 89.973533 converged Fitting Repeat 3 # weights: 507 initial value 97.969426 iter 10 value 94.060749 iter 20 value 94.040351 iter 30 value 88.247206 iter 40 value 80.942961 iter 50 value 79.075943 iter 60 value 79.072193 final value 79.072190 converged Fitting Repeat 4 # weights: 507 initial value 109.451650 iter 10 value 86.234235 iter 20 value 85.623038 iter 30 value 85.622532 iter 40 value 85.619045 iter 50 value 85.614914 iter 50 value 85.614913 final value 85.614913 converged Fitting Repeat 5 # weights: 507 initial value 96.090000 iter 10 value 92.953853 iter 20 value 92.913291 iter 30 value 92.703971 iter 40 value 92.659509 iter 50 value 91.558218 iter 60 value 91.497075 iter 70 value 91.496661 iter 80 value 91.486128 iter 90 value 91.387376 iter 100 value 91.382165 final value 91.382165 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.710267 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.278450 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.599793 final value 94.275362 converged Fitting Repeat 4 # weights: 103 initial value 99.199870 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.842393 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 108.156700 final value 94.305882 converged Fitting Repeat 2 # weights: 305 initial value 97.884703 iter 10 value 86.044663 iter 20 value 84.636741 iter 30 value 84.636304 iter 40 value 84.627582 iter 50 value 84.118391 iter 60 value 83.497862 final value 83.491441 converged Fitting Repeat 3 # weights: 305 initial value 102.792264 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 105.433331 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 101.989822 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 95.125524 iter 10 value 91.996507 iter 20 value 91.684165 iter 30 value 91.676675 final value 91.676672 converged Fitting Repeat 2 # weights: 507 initial value 114.195883 iter 10 value 93.189466 iter 20 value 84.588796 final value 84.588757 converged Fitting Repeat 3 # weights: 507 initial value 100.575073 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.109498 final value 94.275362 converged Fitting Repeat 5 # weights: 507 initial value 96.212595 iter 10 value 90.095549 iter 20 value 84.205309 final value 84.182582 converged Fitting Repeat 1 # weights: 103 initial value 104.817557 iter 10 value 94.505829 iter 20 value 92.748241 iter 30 value 90.692655 iter 40 value 85.930243 iter 50 value 84.950052 iter 60 value 84.735933 iter 70 value 82.582056 iter 80 value 81.835971 iter 90 value 81.715737 iter 100 value 81.663336 final value 81.663336 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.911958 iter 10 value 94.484927 iter 20 value 84.410729 iter 30 value 83.377610 iter 40 value 83.162444 iter 50 value 82.175902 iter 60 value 82.151354 iter 70 value 82.135207 final value 82.131317 converged Fitting Repeat 3 # weights: 103 initial value 99.368339 iter 10 value 94.555015 iter 20 value 94.472917 iter 30 value 83.991557 iter 40 value 82.773499 iter 50 value 82.353229 iter 60 value 82.312443 iter 70 value 82.258895 iter 80 value 82.142126 final value 82.131317 converged Fitting Repeat 4 # weights: 103 initial value 103.042036 iter 10 value 94.488622 iter 20 value 83.868302 iter 30 value 83.279865 iter 40 value 83.034976 iter 50 value 82.385823 iter 60 value 81.761517 iter 70 value 81.662028 iter 80 value 81.654944 final value 81.648530 converged Fitting Repeat 5 # weights: 103 initial value 97.041483 iter 10 value 89.869866 iter 20 value 83.317412 iter 30 value 82.773177 iter 40 value 82.039263 iter 50 value 81.769150 iter 60 value 81.701921 iter 70 value 81.664799 iter 80 value 81.650559 iter 90 value 81.648530 iter 90 value 81.648530 iter 90 value 81.648530 final value 81.648530 converged Fitting Repeat 1 # weights: 305 initial value 104.704852 iter 10 value 94.545580 iter 20 value 92.199490 iter 30 value 92.097552 iter 40 value 90.007765 iter 50 value 85.780137 iter 60 value 83.501008 iter 70 value 82.286300 iter 80 value 81.388965 iter 90 value 80.983408 iter 100 value 80.809657 final value 80.809657 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.478516 iter 10 value 94.670237 iter 20 value 94.237876 iter 30 value 92.732075 iter 40 value 92.213779 iter 50 value 87.226447 iter 60 value 84.835721 iter 70 value 82.892232 iter 80 value 80.922400 iter 90 value 80.603838 iter 100 value 80.106318 final value 80.106318 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.589164 iter 10 value 94.546541 iter 20 value 93.499927 iter 30 value 91.133685 iter 40 value 91.041647 iter 50 value 90.542208 iter 60 value 83.959551 iter 70 value 82.882652 iter 80 value 82.149994 iter 90 value 81.873507 iter 100 value 81.828629 final value 81.828629 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.448582 iter 10 value 93.770576 iter 20 value 88.955135 iter 30 value 85.560520 iter 40 value 85.307471 iter 50 value 84.850801 iter 60 value 83.357763 iter 70 value 81.685181 iter 80 value 80.395597 iter 90 value 79.332568 iter 100 value 79.095755 final value 79.095755 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 121.498910 iter 10 value 96.282359 iter 20 value 95.248336 iter 30 value 86.021866 iter 40 value 84.368073 iter 50 value 83.031051 iter 60 value 82.627603 iter 70 value 82.474250 iter 80 value 82.317957 iter 90 value 81.931842 iter 100 value 80.860656 final value 80.860656 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 126.274196 iter 10 value 94.512824 iter 20 value 88.223616 iter 30 value 83.934079 iter 40 value 82.595197 iter 50 value 80.489399 iter 60 value 80.110296 iter 70 value 79.839733 iter 80 value 79.455751 iter 90 value 79.271219 iter 100 value 79.020402 final value 79.020402 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.397619 iter 10 value 93.327464 iter 20 value 92.432477 iter 30 value 91.709782 iter 40 value 82.733185 iter 50 value 81.314711 iter 60 value 80.658081 iter 70 value 79.876530 iter 80 value 79.468456 iter 90 value 79.379422 iter 100 value 79.121483 final value 79.121483 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.554698 iter 10 value 95.719334 iter 20 value 94.530194 iter 30 value 94.231362 iter 40 value 86.180721 iter 50 value 85.176982 iter 60 value 84.267890 iter 70 value 80.934267 iter 80 value 80.627753 iter 90 value 80.017151 iter 100 value 79.642148 final value 79.642148 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.194712 iter 10 value 96.231120 iter 20 value 94.682017 iter 30 value 85.679472 iter 40 value 82.649181 iter 50 value 80.697342 iter 60 value 80.288187 iter 70 value 80.061854 iter 80 value 79.558767 iter 90 value 79.537118 iter 100 value 79.472326 final value 79.472326 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.747391 iter 10 value 94.485109 iter 20 value 94.208937 iter 30 value 91.095065 iter 40 value 90.289492 iter 50 value 86.777807 iter 60 value 82.506585 iter 70 value 80.947981 iter 80 value 79.943289 iter 90 value 79.721021 iter 100 value 79.627268 final value 79.627268 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.535635 final value 94.485859 converged Fitting Repeat 2 # weights: 103 initial value 98.529518 iter 10 value 94.277292 iter 20 value 94.275565 iter 30 value 94.229283 final value 94.228877 converged Fitting Repeat 3 # weights: 103 initial value 105.942588 iter 10 value 90.345140 iter 20 value 90.342761 iter 30 value 90.305104 iter 40 value 90.303903 iter 50 value 88.864276 iter 60 value 88.777479 iter 70 value 88.581320 iter 80 value 88.408847 iter 90 value 88.408548 final value 88.408544 converged Fitting Repeat 4 # weights: 103 initial value 102.911311 final value 94.485763 converged Fitting Repeat 5 # weights: 103 initial value 98.178109 iter 10 value 94.485628 iter 20 value 94.484216 iter 20 value 94.484215 iter 20 value 94.484215 final value 94.484215 converged Fitting Repeat 1 # weights: 305 initial value 114.377696 iter 10 value 94.453116 iter 20 value 87.354653 iter 30 value 81.294078 iter 40 value 79.303387 iter 50 value 78.863033 iter 60 value 78.725481 iter 70 value 78.725030 iter 80 value 78.724288 iter 90 value 78.478547 iter 100 value 78.143599 final value 78.143599 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.466346 iter 10 value 94.488175 iter 20 value 86.925824 iter 30 value 85.360376 iter 40 value 85.360167 iter 50 value 85.358700 iter 60 value 85.179139 iter 70 value 81.556621 iter 80 value 78.998432 iter 90 value 78.208065 iter 100 value 77.789117 final value 77.789117 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.586931 iter 10 value 94.488881 iter 20 value 94.484124 final value 94.275490 converged Fitting Repeat 4 # weights: 305 initial value 99.813069 iter 10 value 94.488487 iter 20 value 94.331116 iter 30 value 89.196286 iter 40 value 82.680448 iter 50 value 81.249648 iter 60 value 81.052245 iter 70 value 81.052114 final value 81.052104 converged Fitting Repeat 5 # weights: 305 initial value 106.115933 iter 10 value 94.488829 iter 20 value 94.481541 iter 30 value 86.051531 iter 40 value 83.038061 iter 50 value 83.034845 iter 60 value 82.431549 final value 82.401008 converged Fitting Repeat 1 # weights: 507 initial value 114.524284 iter 10 value 94.284430 iter 20 value 94.280131 iter 30 value 94.232853 iter 40 value 94.229939 iter 50 value 86.192992 iter 60 value 84.796284 iter 70 value 83.963541 iter 80 value 83.962640 iter 90 value 83.961935 iter 100 value 83.960119 final value 83.960119 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 138.340693 iter 10 value 95.004545 iter 20 value 94.237705 iter 30 value 94.231020 iter 40 value 89.343913 iter 50 value 82.277572 iter 60 value 82.274978 iter 70 value 82.117860 iter 80 value 82.105195 iter 90 value 81.363769 iter 100 value 80.732507 final value 80.732507 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.340962 iter 10 value 94.456457 iter 20 value 94.448260 iter 30 value 82.709727 final value 82.413550 converged Fitting Repeat 4 # weights: 507 initial value 108.294247 iter 10 value 92.451602 iter 20 value 88.683438 iter 30 value 88.672075 iter 40 value 88.178115 iter 50 value 88.175332 final value 88.175131 converged Fitting Repeat 5 # weights: 507 initial value 102.398669 iter 10 value 94.491608 iter 20 value 94.472902 iter 30 value 89.243192 iter 40 value 87.904044 iter 50 value 83.247399 iter 60 value 82.412635 final value 82.412516 converged Fitting Repeat 1 # weights: 103 initial value 96.311307 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.622121 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.373206 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 106.924451 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 101.070872 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 110.314381 final value 94.354396 converged Fitting Repeat 2 # weights: 305 initial value 115.539915 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 96.909369 iter 10 value 91.802961 iter 20 value 86.971332 final value 86.756876 converged Fitting Repeat 4 # weights: 305 initial value 103.920819 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 106.368253 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 94.745055 iter 10 value 94.354396 iter 10 value 94.354396 iter 10 value 94.354396 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 111.616703 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 112.071831 iter 10 value 89.505178 final value 88.182700 converged Fitting Repeat 4 # weights: 507 initial value 128.447370 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 127.748444 iter 10 value 94.484555 final value 94.252920 converged Fitting Repeat 1 # weights: 103 initial value 96.285939 iter 10 value 94.489835 iter 20 value 94.452488 iter 30 value 89.896580 iter 40 value 88.181418 iter 50 value 87.134197 iter 60 value 86.158571 iter 70 value 86.045689 final value 86.044918 converged Fitting Repeat 2 # weights: 103 initial value 98.678388 iter 10 value 93.260017 iter 20 value 89.955802 iter 30 value 88.166667 iter 40 value 87.652754 iter 50 value 87.005317 iter 60 value 85.402485 final value 85.373496 converged Fitting Repeat 3 # weights: 103 initial value 98.281227 final value 94.488599 converged Fitting Repeat 4 # weights: 103 initial value 104.093582 iter 10 value 94.398293 iter 20 value 89.517368 iter 30 value 88.126864 iter 40 value 87.700437 iter 50 value 87.341445 iter 60 value 86.553974 iter 70 value 86.045784 final value 86.042350 converged Fitting Repeat 5 # weights: 103 initial value 103.612415 iter 10 value 94.542151 iter 20 value 94.474390 iter 30 value 87.420743 iter 40 value 86.817046 iter 50 value 86.681405 iter 60 value 86.601788 iter 70 value 86.124129 iter 80 value 85.227665 iter 90 value 85.075282 iter 100 value 85.021946 final value 85.021946 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 109.067694 iter 10 value 94.751900 iter 20 value 94.551467 iter 30 value 94.219734 iter 40 value 94.051646 iter 50 value 93.213271 iter 60 value 90.124776 iter 70 value 89.348336 iter 80 value 88.502127 iter 90 value 88.289553 iter 100 value 88.019596 final value 88.019596 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.291021 iter 10 value 93.439292 iter 20 value 88.495498 iter 30 value 86.587133 iter 40 value 86.179396 iter 50 value 85.910320 iter 60 value 85.624812 iter 70 value 84.697039 iter 80 value 83.682475 iter 90 value 83.385696 iter 100 value 83.027012 final value 83.027012 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.909357 iter 10 value 94.499662 iter 20 value 89.501710 iter 30 value 88.137023 iter 40 value 87.162714 iter 50 value 86.798792 iter 60 value 84.738529 iter 70 value 84.373413 iter 80 value 84.223567 iter 90 value 84.037104 iter 100 value 83.665606 final value 83.665606 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.354272 iter 10 value 94.326219 iter 20 value 92.985330 iter 30 value 92.716643 iter 40 value 89.766396 iter 50 value 88.673688 iter 60 value 86.598144 iter 70 value 85.676272 iter 80 value 84.551871 iter 90 value 83.490270 iter 100 value 83.342566 final value 83.342566 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 115.150438 iter 10 value 95.211900 iter 20 value 94.542602 iter 30 value 94.429550 iter 40 value 90.977084 iter 50 value 88.506503 iter 60 value 86.882709 iter 70 value 86.433412 iter 80 value 86.417970 iter 90 value 85.324098 iter 100 value 84.451686 final value 84.451686 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.476384 iter 10 value 96.040039 iter 20 value 91.394678 iter 30 value 87.605630 iter 40 value 85.644979 iter 50 value 84.718731 iter 60 value 84.421076 iter 70 value 84.300399 iter 80 value 84.158303 iter 90 value 83.819920 iter 100 value 83.294527 final value 83.294527 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.239188 iter 10 value 94.982488 iter 20 value 91.447171 iter 30 value 88.565882 iter 40 value 86.204221 iter 50 value 84.533770 iter 60 value 83.581300 iter 70 value 83.183063 iter 80 value 83.044354 iter 90 value 82.996824 iter 100 value 82.892060 final value 82.892060 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 130.456724 iter 10 value 94.832845 iter 20 value 94.124731 iter 30 value 90.257395 iter 40 value 86.755132 iter 50 value 85.968552 iter 60 value 84.257173 iter 70 value 83.544786 iter 80 value 83.144537 iter 90 value 82.969022 iter 100 value 82.833316 final value 82.833316 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.298453 iter 10 value 94.460008 iter 20 value 94.368790 iter 30 value 92.179954 iter 40 value 89.625322 iter 50 value 87.421229 iter 60 value 86.831004 iter 70 value 84.954833 iter 80 value 84.518111 iter 90 value 84.318141 iter 100 value 83.872313 final value 83.872313 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 126.313920 iter 10 value 94.411805 iter 20 value 88.380292 iter 30 value 88.009392 iter 40 value 87.519485 iter 50 value 87.143941 iter 60 value 86.357617 iter 70 value 85.775731 iter 80 value 84.725417 iter 90 value 83.952900 iter 100 value 83.496060 final value 83.496060 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.643810 final value 94.356100 converged Fitting Repeat 2 # weights: 103 initial value 98.388046 final value 94.485749 converged Fitting Repeat 3 # weights: 103 initial value 95.209698 final value 94.485868 converged Fitting Repeat 4 # weights: 103 initial value 98.329368 final value 94.485957 converged Fitting Repeat 5 # weights: 103 initial value 102.617621 iter 10 value 94.485725 iter 20 value 94.482992 iter 30 value 93.570533 iter 40 value 93.569123 iter 50 value 93.536340 iter 50 value 93.536339 iter 50 value 93.536339 final value 93.536339 converged Fitting Repeat 1 # weights: 305 initial value 117.890426 iter 10 value 94.648981 iter 20 value 93.031365 iter 30 value 86.907154 iter 40 value 86.877004 iter 50 value 86.519406 iter 60 value 86.423239 iter 70 value 86.323954 iter 80 value 86.285425 iter 90 value 86.274681 iter 100 value 86.173897 final value 86.173897 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 97.522653 iter 10 value 94.359245 iter 20 value 92.347683 iter 30 value 87.958877 iter 40 value 87.579687 iter 50 value 86.620325 final value 86.620264 converged Fitting Repeat 3 # weights: 305 initial value 104.441362 iter 10 value 94.359586 iter 20 value 93.490909 iter 30 value 92.529307 iter 40 value 92.196543 iter 50 value 84.605251 iter 60 value 84.599070 iter 70 value 83.585567 final value 83.583918 converged Fitting Repeat 4 # weights: 305 initial value 105.306552 iter 10 value 94.489339 iter 20 value 94.472502 iter 30 value 93.928502 iter 40 value 91.075983 iter 50 value 90.713411 iter 60 value 90.442485 iter 70 value 90.420920 iter 80 value 90.419740 iter 90 value 87.522130 iter 100 value 85.379352 final value 85.379352 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.650951 iter 10 value 94.488915 iter 20 value 94.257821 iter 30 value 94.255477 iter 40 value 94.248020 iter 50 value 94.245602 iter 60 value 94.245468 final value 94.245438 converged Fitting Repeat 1 # weights: 507 initial value 112.718322 iter 10 value 94.362711 iter 20 value 94.356266 iter 30 value 94.246313 iter 40 value 92.499883 iter 50 value 87.879191 iter 60 value 87.800826 iter 70 value 87.779642 iter 80 value 87.779370 final value 87.779356 converged Fitting Repeat 2 # weights: 507 initial value 114.657820 iter 10 value 94.097304 iter 20 value 94.056072 iter 30 value 93.980780 final value 93.980687 converged Fitting Repeat 3 # weights: 507 initial value 96.565930 iter 10 value 94.487299 iter 20 value 91.285550 iter 30 value 88.010779 iter 40 value 85.775498 iter 50 value 84.268407 iter 60 value 84.021221 iter 70 value 83.826123 iter 80 value 83.817195 iter 90 value 83.778716 iter 100 value 82.913234 final value 82.913234 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 97.367578 iter 10 value 94.253771 iter 20 value 94.248570 iter 30 value 94.247012 iter 40 value 93.857858 iter 50 value 92.932870 iter 60 value 92.837843 iter 70 value 92.816805 iter 80 value 92.815804 iter 90 value 92.815511 iter 100 value 92.815171 final value 92.815171 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.040333 iter 10 value 94.492009 iter 20 value 92.366836 iter 30 value 87.431157 final value 87.431077 converged Fitting Repeat 1 # weights: 305 initial value 129.179114 final value 117.959265 converged Fitting Repeat 2 # weights: 305 initial value 131.218960 iter 10 value 117.894613 iter 20 value 117.872703 iter 30 value 114.821102 iter 40 value 114.398609 iter 50 value 113.829068 iter 60 value 113.828364 iter 70 value 112.598069 iter 80 value 107.005510 iter 90 value 107.004617 iter 100 value 107.002570 final value 107.002570 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 121.350551 iter 10 value 117.895139 iter 20 value 116.986989 iter 30 value 106.857528 final value 106.834117 converged Fitting Repeat 4 # weights: 305 initial value 151.931412 iter 10 value 117.895164 iter 20 value 117.855061 iter 30 value 117.536075 iter 40 value 109.774377 iter 50 value 109.394898 final value 109.382362 converged Fitting Repeat 5 # weights: 305 initial value 121.449549 iter 10 value 117.895276 iter 20 value 117.886950 iter 30 value 115.219339 iter 40 value 113.635479 iter 50 value 113.512552 final value 113.353361 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Mar 14 21:44:54 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 48.793 1.730 121.168
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 51.417 | 2.002 | 53.600 | |
FreqInteractors | 0.249 | 0.012 | 0.263 | |
calculateAAC | 0.040 | 0.009 | 0.048 | |
calculateAutocor | 0.410 | 0.063 | 0.474 | |
calculateCTDC | 0.084 | 0.004 | 0.090 | |
calculateCTDD | 0.553 | 0.029 | 0.593 | |
calculateCTDT | 0.250 | 0.018 | 0.267 | |
calculateCTriad | 0.471 | 0.051 | 0.523 | |
calculateDC | 0.097 | 0.010 | 0.106 | |
calculateF | 0.304 | 0.015 | 0.319 | |
calculateKSAAP | 0.096 | 0.009 | 0.105 | |
calculateQD_Sm | 1.858 | 0.144 | 2.001 | |
calculateTC | 1.597 | 0.151 | 1.768 | |
calculateTC_Sm | 0.282 | 0.019 | 0.301 | |
corr_plot | 51.714 | 2.207 | 54.092 | |
enrichfindP | 0.495 | 0.075 | 10.976 | |
enrichfind_hp | 0.068 | 0.016 | 1.049 | |
enrichplot | 0.381 | 0.009 | 0.390 | |
filter_missing_values | 0.001 | 0.001 | 0.002 | |
getFASTA | 0.089 | 0.017 | 1.180 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0.000 | 0.000 | 0.001 | |
impute_missing_data | 0.001 | 0.001 | 0.001 | |
plotPPI | 0.072 | 0.002 | 0.074 | |
pred_ensembel | 16.919 | 0.535 | 15.409 | |
var_imp | 51.413 | 2.108 | 53.696 | |