Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-02-06 12:04 -0500 (Thu, 06 Feb 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4753 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4501 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4524 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4476 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4407 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-02-03 23:14:57 -0500 (Mon, 03 Feb 2025) |
EndedAt: 2025-02-03 23:30:13 -0500 (Mon, 03 Feb 2025) |
EllapsedTime: 916.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.20-bioc/R/site-library --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.2.0-23ubuntu4) 13.2.0 GNU Fortran (Ubuntu 13.2.0-23ubuntu4) 13.2.0 * running under: Ubuntu 24.04.1 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.983 0.337 36.369 corr_plot 34.822 0.332 35.228 FSmethod 34.381 0.509 34.892 pred_ensembel 12.841 0.100 11.751 enrichfindP 0.543 0.035 8.969 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.20-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.20-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 107.239691 iter 10 value 94.484477 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.230059 final value 94.088889 converged Fitting Repeat 3 # weights: 103 initial value 111.949781 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.735535 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.462903 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.480949 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 97.810426 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 104.834452 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 126.555806 iter 10 value 94.363647 final value 94.363636 converged Fitting Repeat 5 # weights: 305 initial value 106.969829 iter 10 value 94.070883 iter 20 value 94.057008 final value 94.056928 converged Fitting Repeat 1 # weights: 507 initial value 96.854911 iter 10 value 87.050663 final value 86.935656 converged Fitting Repeat 2 # weights: 507 initial value 98.630376 final value 94.354396 converged Fitting Repeat 3 # weights: 507 initial value 123.889248 final value 94.354396 converged Fitting Repeat 4 # weights: 507 initial value 98.680466 final value 94.353550 converged Fitting Repeat 5 # weights: 507 initial value 96.784294 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 105.117218 iter 10 value 94.488614 iter 20 value 90.481555 iter 30 value 85.459230 iter 40 value 84.464103 iter 50 value 84.200345 final value 84.194723 converged Fitting Repeat 2 # weights: 103 initial value 97.475649 final value 94.488534 converged Fitting Repeat 3 # weights: 103 initial value 98.774349 iter 10 value 94.487084 iter 20 value 94.434693 iter 30 value 94.156268 iter 40 value 94.138098 iter 50 value 94.133216 iter 60 value 86.360307 iter 70 value 84.517898 iter 80 value 84.334117 iter 90 value 84.197180 final value 84.194723 converged Fitting Repeat 4 # weights: 103 initial value 96.813032 iter 10 value 91.487842 iter 20 value 87.511376 iter 30 value 85.430928 iter 40 value 85.210906 iter 50 value 85.123136 iter 60 value 84.361129 iter 70 value 84.195036 final value 84.194723 converged Fitting Repeat 5 # weights: 103 initial value 97.666704 iter 10 value 94.111946 iter 20 value 86.790022 iter 30 value 85.614463 iter 40 value 84.450477 iter 50 value 83.899265 iter 60 value 83.751917 iter 70 value 83.721938 final value 83.721920 converged Fitting Repeat 1 # weights: 305 initial value 104.711965 iter 10 value 96.457687 iter 20 value 91.185185 iter 30 value 86.962366 iter 40 value 86.147551 iter 50 value 85.693829 iter 60 value 85.321443 iter 70 value 85.264663 iter 80 value 84.865956 iter 90 value 84.310186 iter 100 value 82.205263 final value 82.205263 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.265891 iter 10 value 94.501317 iter 20 value 91.496350 iter 30 value 88.578718 iter 40 value 87.179366 iter 50 value 85.529897 iter 60 value 85.064761 iter 70 value 84.335892 iter 80 value 84.091290 iter 90 value 83.233309 iter 100 value 83.043362 final value 83.043362 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.390164 iter 10 value 94.490589 iter 20 value 85.552770 iter 30 value 85.319067 iter 40 value 83.589775 iter 50 value 82.265659 iter 60 value 82.044224 iter 70 value 81.871700 iter 80 value 81.636752 iter 90 value 81.110358 iter 100 value 80.954390 final value 80.954390 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.566071 iter 10 value 95.192221 iter 20 value 92.839067 iter 30 value 88.054736 iter 40 value 87.252252 iter 50 value 84.712622 iter 60 value 84.137634 iter 70 value 83.139207 iter 80 value 82.569791 iter 90 value 82.288292 iter 100 value 81.749515 final value 81.749515 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.241728 iter 10 value 90.693366 iter 20 value 89.564169 iter 30 value 86.733989 iter 40 value 85.258270 iter 50 value 84.156832 iter 60 value 83.650335 iter 70 value 83.310867 iter 80 value 83.095356 iter 90 value 83.076515 iter 100 value 82.957862 final value 82.957862 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.667270 iter 10 value 94.607403 iter 20 value 93.868138 iter 30 value 89.327861 iter 40 value 87.503688 iter 50 value 85.171329 iter 60 value 83.256318 iter 70 value 82.710627 iter 80 value 82.377422 iter 90 value 81.811296 iter 100 value 81.340877 final value 81.340877 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.089642 iter 10 value 95.863618 iter 20 value 89.116390 iter 30 value 86.227249 iter 40 value 84.354772 iter 50 value 84.245616 iter 60 value 84.058052 iter 70 value 82.940044 iter 80 value 82.089133 iter 90 value 81.719534 iter 100 value 81.558362 final value 81.558362 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.836369 iter 10 value 94.808820 iter 20 value 88.043891 iter 30 value 85.550579 iter 40 value 85.266862 iter 50 value 83.519194 iter 60 value 82.713206 iter 70 value 82.331613 iter 80 value 81.827166 iter 90 value 81.424414 iter 100 value 81.383729 final value 81.383729 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 110.262223 iter 10 value 93.808923 iter 20 value 87.994698 iter 30 value 86.575009 iter 40 value 85.497112 iter 50 value 83.629489 iter 60 value 82.884463 iter 70 value 82.322971 iter 80 value 81.597925 iter 90 value 81.445832 iter 100 value 81.268783 final value 81.268783 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.785041 iter 10 value 93.301139 iter 20 value 85.744378 iter 30 value 84.354220 iter 40 value 83.495255 iter 50 value 82.388567 iter 60 value 81.655085 iter 70 value 81.417668 iter 80 value 81.305658 iter 90 value 81.214422 iter 100 value 80.992538 final value 80.992538 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.329723 final value 94.486160 converged Fitting Repeat 2 # weights: 103 initial value 99.959703 iter 10 value 94.485967 iter 20 value 94.484273 iter 30 value 94.067516 iter 40 value 93.211857 iter 50 value 93.099026 iter 60 value 93.095911 iter 70 value 93.063298 final value 93.063282 converged Fitting Repeat 3 # weights: 103 initial value 94.911198 final value 94.485661 converged Fitting Repeat 4 # weights: 103 initial value 99.183710 iter 10 value 94.485893 iter 20 value 94.484276 final value 94.484218 converged Fitting Repeat 5 # weights: 103 initial value 103.134097 final value 94.485832 converged Fitting Repeat 1 # weights: 305 initial value 101.147260 iter 10 value 94.489272 iter 20 value 94.484474 iter 30 value 94.170940 final value 94.145097 converged Fitting Repeat 2 # weights: 305 initial value 95.593635 iter 10 value 94.489080 iter 20 value 94.408009 iter 30 value 93.524613 iter 40 value 84.553764 iter 50 value 84.494671 iter 60 value 82.672324 iter 70 value 81.498852 iter 80 value 81.487812 iter 90 value 81.486834 final value 81.486640 converged Fitting Repeat 3 # weights: 305 initial value 100.697596 iter 10 value 94.217976 iter 20 value 94.215173 iter 30 value 94.212899 final value 94.212782 converged Fitting Repeat 4 # weights: 305 initial value 102.461133 iter 10 value 94.488540 iter 20 value 94.355410 iter 30 value 94.143822 iter 40 value 94.141965 final value 94.141955 converged Fitting Repeat 5 # weights: 305 initial value 99.676499 iter 10 value 94.359571 iter 20 value 94.355045 iter 30 value 94.354451 iter 40 value 93.452831 iter 50 value 83.262445 iter 60 value 83.247764 iter 70 value 83.103615 iter 80 value 83.087569 iter 90 value 83.082051 iter 100 value 81.005461 final value 81.005461 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.958590 iter 10 value 94.490083 iter 20 value 90.407161 iter 30 value 86.778333 iter 40 value 86.440873 iter 50 value 86.233420 final value 86.232848 converged Fitting Repeat 2 # weights: 507 initial value 103.457888 iter 10 value 94.492540 iter 20 value 94.462811 iter 30 value 89.167982 iter 40 value 88.541232 iter 50 value 88.111110 iter 60 value 87.936523 iter 70 value 87.936223 iter 80 value 85.514766 iter 90 value 83.891614 iter 100 value 83.871830 final value 83.871830 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.183397 iter 10 value 92.579591 iter 20 value 83.199754 iter 30 value 82.899083 iter 40 value 82.727492 iter 50 value 82.308313 iter 60 value 82.258681 iter 70 value 81.735025 iter 80 value 81.684962 iter 90 value 81.682715 iter 100 value 81.677440 final value 81.677440 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.694006 iter 10 value 94.492001 iter 20 value 94.484468 iter 30 value 93.745116 iter 40 value 90.258079 iter 50 value 90.244454 iter 60 value 90.243981 iter 70 value 90.242408 iter 70 value 90.242408 final value 90.242408 converged Fitting Repeat 5 # weights: 507 initial value 107.311284 iter 10 value 94.168647 iter 20 value 94.140507 iter 30 value 94.133497 final value 94.133482 converged Fitting Repeat 1 # weights: 103 initial value 99.014375 final value 93.447848 converged Fitting Repeat 2 # weights: 103 initial value 101.625315 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.780767 iter 10 value 91.017521 iter 20 value 90.201642 iter 30 value 90.157486 final value 90.157444 converged Fitting Repeat 4 # weights: 103 initial value 100.480426 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 101.622686 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 94.521308 final value 94.409356 converged Fitting Repeat 2 # weights: 305 initial value 103.090815 iter 10 value 94.483835 iter 20 value 94.474697 final value 94.473126 converged Fitting Repeat 3 # weights: 305 initial value 96.975108 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 112.701488 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.055159 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 117.568955 iter 10 value 94.473121 final value 94.473118 converged Fitting Repeat 2 # weights: 507 initial value 109.479148 iter 10 value 94.725387 iter 20 value 85.424952 iter 30 value 84.903076 iter 40 value 84.814545 iter 50 value 84.717684 final value 84.717425 converged Fitting Repeat 3 # weights: 507 initial value 100.172135 final value 94.473118 converged Fitting Repeat 4 # weights: 507 initial value 115.696007 iter 10 value 93.179554 iter 20 value 90.592583 iter 30 value 90.489212 final value 90.489136 converged Fitting Repeat 5 # weights: 507 initial value 108.054916 iter 10 value 92.604672 iter 20 value 92.522771 final value 92.522763 converged Fitting Repeat 1 # weights: 103 initial value 101.306931 iter 10 value 94.492656 iter 20 value 94.452544 iter 30 value 90.662737 iter 40 value 89.097517 iter 50 value 83.984900 iter 60 value 80.703479 iter 70 value 79.865948 iter 80 value 79.687803 iter 90 value 78.601889 iter 100 value 77.902604 final value 77.902604 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.322934 iter 10 value 94.228854 iter 20 value 88.918165 iter 30 value 83.445614 iter 40 value 82.637460 iter 50 value 82.113520 iter 60 value 81.243523 iter 70 value 81.079832 final value 81.079478 converged Fitting Repeat 3 # weights: 103 initial value 98.262386 iter 10 value 94.488707 iter 20 value 94.023699 iter 30 value 83.626797 iter 40 value 80.737526 iter 50 value 80.199071 iter 60 value 79.563127 iter 70 value 79.065561 iter 80 value 78.534877 iter 90 value 78.138388 iter 100 value 77.630736 final value 77.630736 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.940423 iter 10 value 94.563796 iter 20 value 94.488281 iter 30 value 85.676434 iter 40 value 83.432876 iter 50 value 82.756223 iter 60 value 82.315113 iter 70 value 81.957795 iter 80 value 81.759998 final value 81.736814 converged Fitting Repeat 5 # weights: 103 initial value 103.036322 iter 10 value 94.488517 iter 20 value 93.466441 iter 30 value 91.231194 iter 40 value 89.689830 iter 50 value 87.078739 iter 60 value 86.485860 iter 70 value 85.964257 iter 80 value 83.403844 iter 90 value 83.050690 iter 100 value 82.020054 final value 82.020054 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.525289 iter 10 value 94.136773 iter 20 value 81.720040 iter 30 value 80.213821 iter 40 value 80.066717 iter 50 value 78.810098 iter 60 value 78.313171 iter 70 value 77.943307 iter 80 value 77.887590 iter 90 value 77.861800 iter 100 value 77.821661 final value 77.821661 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.077703 iter 10 value 94.476467 iter 20 value 88.080000 iter 30 value 85.994022 iter 40 value 82.889344 iter 50 value 81.867069 iter 60 value 79.535101 iter 70 value 79.373800 iter 80 value 79.356545 iter 90 value 79.047281 iter 100 value 78.308118 final value 78.308118 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.692121 iter 10 value 94.605838 iter 20 value 90.063577 iter 30 value 82.823461 iter 40 value 82.246822 iter 50 value 81.691980 iter 60 value 81.395351 iter 70 value 79.104158 iter 80 value 77.876593 iter 90 value 77.787545 iter 100 value 77.459979 final value 77.459979 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.517199 iter 10 value 94.460927 iter 20 value 88.897670 iter 30 value 83.091083 iter 40 value 79.558145 iter 50 value 77.889351 iter 60 value 76.954154 iter 70 value 76.892252 iter 80 value 76.721449 iter 90 value 76.602700 iter 100 value 76.578514 final value 76.578514 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.002486 iter 10 value 94.860895 iter 20 value 93.381013 iter 30 value 86.167099 iter 40 value 84.673023 iter 50 value 81.407475 iter 60 value 78.609433 iter 70 value 77.831792 iter 80 value 77.512961 iter 90 value 76.577828 iter 100 value 75.950896 final value 75.950896 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.388643 iter 10 value 94.469747 iter 20 value 92.869915 iter 30 value 89.170272 iter 40 value 87.763863 iter 50 value 82.988491 iter 60 value 80.080790 iter 70 value 79.392913 iter 80 value 77.721434 iter 90 value 77.379546 iter 100 value 77.249316 final value 77.249316 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.406061 iter 10 value 95.539818 iter 20 value 94.446563 iter 30 value 84.155166 iter 40 value 81.510599 iter 50 value 80.082782 iter 60 value 79.013929 iter 70 value 77.794779 iter 80 value 77.423229 iter 90 value 77.306327 iter 100 value 77.218269 final value 77.218269 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.610635 iter 10 value 94.741564 iter 20 value 94.319771 iter 30 value 87.516832 iter 40 value 86.334782 iter 50 value 84.204686 iter 60 value 82.850900 iter 70 value 82.119413 iter 80 value 78.942557 iter 90 value 77.486666 iter 100 value 76.363779 final value 76.363779 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.911251 iter 10 value 95.386733 iter 20 value 84.220664 iter 30 value 83.396667 iter 40 value 82.154132 iter 50 value 79.358808 iter 60 value 78.366704 iter 70 value 77.674336 iter 80 value 77.002699 iter 90 value 76.638525 iter 100 value 76.514667 final value 76.514667 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.591677 iter 10 value 94.261043 iter 20 value 92.921860 iter 30 value 88.550735 iter 40 value 84.262274 iter 50 value 79.892907 iter 60 value 79.219104 iter 70 value 78.809654 iter 80 value 78.498507 iter 90 value 76.442980 iter 100 value 76.013287 final value 76.013287 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.785130 final value 94.485737 converged Fitting Repeat 2 # weights: 103 initial value 96.270291 iter 10 value 94.485837 final value 94.484232 converged Fitting Repeat 3 # weights: 103 initial value 94.931896 iter 10 value 92.095192 iter 20 value 91.957493 iter 30 value 91.954949 iter 40 value 91.888479 iter 50 value 91.855644 iter 60 value 91.807733 iter 70 value 88.128216 iter 80 value 84.323673 iter 90 value 84.262991 iter 100 value 81.869330 final value 81.869330 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.176886 final value 94.485660 converged Fitting Repeat 5 # weights: 103 initial value 100.235700 final value 94.485912 converged Fitting Repeat 1 # weights: 305 initial value 127.505947 iter 10 value 94.489441 iter 20 value 94.484745 iter 30 value 93.799730 iter 40 value 90.877517 iter 50 value 83.502064 iter 60 value 83.439247 final value 83.438388 converged Fitting Repeat 2 # weights: 305 initial value 111.492549 iter 10 value 94.477882 iter 20 value 94.468588 iter 30 value 89.620058 iter 40 value 82.585922 final value 82.584191 converged Fitting Repeat 3 # weights: 305 initial value 94.980943 iter 10 value 94.486877 iter 20 value 87.975643 iter 30 value 82.754162 iter 40 value 82.728553 iter 50 value 81.523258 iter 60 value 78.291809 iter 70 value 76.693918 iter 80 value 76.600070 iter 90 value 76.599507 iter 100 value 76.597393 final value 76.597393 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.048468 iter 10 value 93.240758 iter 20 value 90.350509 iter 30 value 90.285630 iter 40 value 90.283944 iter 50 value 90.282739 iter 60 value 90.201861 iter 70 value 90.201460 final value 90.201370 converged Fitting Repeat 5 # weights: 305 initial value 98.424311 iter 10 value 94.488561 iter 20 value 94.484245 final value 94.484214 converged Fitting Repeat 1 # weights: 507 initial value 96.744719 iter 10 value 94.492277 iter 20 value 94.482879 iter 30 value 93.858752 iter 40 value 85.443855 iter 50 value 84.882805 iter 60 value 82.747368 iter 70 value 81.145337 iter 80 value 81.142714 iter 90 value 81.027865 final value 80.969297 converged Fitting Repeat 2 # weights: 507 initial value 99.339333 iter 10 value 94.478186 iter 20 value 94.473672 iter 20 value 94.473671 iter 20 value 94.473671 final value 94.473671 converged Fitting Repeat 3 # weights: 507 initial value 101.583996 iter 10 value 94.493381 iter 20 value 94.485250 iter 30 value 94.358601 iter 40 value 89.306248 iter 50 value 83.142365 iter 60 value 81.270200 final value 81.000905 converged Fitting Repeat 4 # weights: 507 initial value 103.591317 iter 10 value 94.336446 iter 20 value 94.261108 iter 30 value 93.857554 iter 40 value 91.014441 iter 50 value 90.662795 iter 60 value 89.523808 iter 70 value 88.794311 final value 88.749493 converged Fitting Repeat 5 # weights: 507 initial value 108.462176 iter 10 value 94.253561 iter 20 value 94.247499 iter 30 value 94.247190 iter 40 value 94.245506 iter 50 value 93.159772 iter 60 value 90.067478 iter 70 value 80.649008 iter 80 value 76.799987 iter 90 value 75.583515 iter 100 value 74.445330 final value 74.445330 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.490412 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.211962 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.336895 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.937777 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.264893 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 97.166301 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 120.626544 iter 10 value 93.104041 iter 20 value 92.831045 final value 92.828413 converged Fitting Repeat 3 # weights: 305 initial value 124.123609 iter 10 value 93.329582 final value 93.328261 converged Fitting Repeat 4 # weights: 305 initial value 94.311490 iter 10 value 92.043188 final value 92.043182 converged Fitting Repeat 5 # weights: 305 initial value 103.010483 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.214140 iter 10 value 91.588451 iter 20 value 86.789460 final value 86.256677 converged Fitting Repeat 2 # weights: 507 initial value 109.987624 final value 93.697143 converged Fitting Repeat 3 # weights: 507 initial value 97.705658 iter 10 value 93.328262 final value 93.328261 converged Fitting Repeat 4 # weights: 507 initial value 98.435834 iter 10 value 92.043238 final value 92.043182 converged Fitting Repeat 5 # weights: 507 initial value 99.846507 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 107.552526 iter 10 value 92.519536 iter 20 value 86.666013 iter 30 value 85.937711 iter 40 value 85.262587 iter 50 value 81.102856 iter 60 value 80.486561 iter 70 value 80.398571 final value 80.397924 converged Fitting Repeat 2 # weights: 103 initial value 95.857330 iter 10 value 94.057213 iter 20 value 93.023733 iter 30 value 85.532746 iter 40 value 83.364693 iter 50 value 82.828036 iter 60 value 82.701458 final value 82.700725 converged Fitting Repeat 3 # weights: 103 initial value 99.243412 iter 10 value 93.544907 iter 20 value 93.013858 iter 30 value 89.357990 iter 40 value 88.092447 iter 50 value 87.412689 iter 60 value 82.876481 iter 70 value 82.083242 iter 80 value 81.968455 iter 90 value 80.992056 iter 100 value 80.822275 final value 80.822275 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.054633 iter 10 value 94.057032 iter 20 value 94.050451 iter 30 value 89.982345 iter 40 value 88.713712 iter 50 value 88.678262 iter 60 value 88.674950 iter 70 value 84.730133 iter 80 value 83.199851 iter 90 value 83.031367 final value 83.026513 converged Fitting Repeat 5 # weights: 103 initial value 102.141390 iter 10 value 94.051398 iter 20 value 93.232616 iter 30 value 93.026357 iter 40 value 93.017446 iter 50 value 92.721302 iter 60 value 90.898073 iter 70 value 87.200804 iter 80 value 87.108713 iter 90 value 87.057196 iter 100 value 82.031324 final value 82.031324 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 100.427339 iter 10 value 94.028322 iter 20 value 93.148934 iter 30 value 92.993874 iter 40 value 92.884939 iter 50 value 89.792976 iter 60 value 83.011821 iter 70 value 80.480503 iter 80 value 80.009904 iter 90 value 79.525066 iter 100 value 79.344510 final value 79.344510 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.685176 iter 10 value 93.162837 iter 20 value 87.745288 iter 30 value 83.159413 iter 40 value 82.578401 iter 50 value 81.773422 iter 60 value 80.893930 iter 70 value 80.727081 iter 80 value 80.412743 iter 90 value 80.357433 iter 100 value 80.322722 final value 80.322722 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 116.170507 iter 10 value 94.067441 iter 20 value 93.385992 iter 30 value 86.020864 iter 40 value 85.569894 iter 50 value 84.081459 iter 60 value 81.470248 iter 70 value 81.189509 iter 80 value 81.115666 iter 90 value 80.789279 iter 100 value 80.419030 final value 80.419030 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.503072 iter 10 value 93.766971 iter 20 value 93.302620 iter 30 value 93.000694 iter 40 value 84.703428 iter 50 value 83.040284 iter 60 value 82.109683 iter 70 value 81.664633 iter 80 value 80.198809 iter 90 value 79.845980 iter 100 value 79.508643 final value 79.508643 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.630312 iter 10 value 93.645311 iter 20 value 92.926572 iter 30 value 84.481870 iter 40 value 83.012696 iter 50 value 82.654070 iter 60 value 81.387345 iter 70 value 80.259143 iter 80 value 79.948160 iter 90 value 79.854534 iter 100 value 79.796408 final value 79.796408 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.859327 iter 10 value 94.170904 iter 20 value 92.226393 iter 30 value 88.371175 iter 40 value 83.469188 iter 50 value 82.130694 iter 60 value 81.586026 iter 70 value 80.420648 iter 80 value 80.287316 iter 90 value 80.120107 iter 100 value 79.767935 final value 79.767935 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.865022 iter 10 value 94.041867 iter 20 value 92.139768 iter 30 value 85.882295 iter 40 value 84.595442 iter 50 value 83.304459 iter 60 value 81.909749 iter 70 value 81.322882 iter 80 value 80.144612 iter 90 value 79.475296 iter 100 value 79.097648 final value 79.097648 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.325709 iter 10 value 93.687503 iter 20 value 84.661373 iter 30 value 83.302721 iter 40 value 82.880495 iter 50 value 82.284644 iter 60 value 81.518654 iter 70 value 80.445327 iter 80 value 80.294479 iter 90 value 80.277028 iter 100 value 80.034000 final value 80.034000 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.868617 iter 10 value 95.420534 iter 20 value 90.057645 iter 30 value 84.731005 iter 40 value 82.629912 iter 50 value 80.789222 iter 60 value 79.868655 iter 70 value 79.338273 iter 80 value 79.046702 iter 90 value 78.886891 iter 100 value 78.869978 final value 78.869978 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 128.652146 iter 10 value 98.900860 iter 20 value 95.959398 iter 30 value 85.960297 iter 40 value 83.373942 iter 50 value 83.164063 iter 60 value 83.014808 iter 70 value 82.784921 iter 80 value 82.496844 iter 90 value 80.861795 iter 100 value 80.249253 final value 80.249253 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.628382 iter 10 value 93.107794 iter 20 value 93.089160 iter 30 value 93.087977 final value 93.087681 converged Fitting Repeat 2 # weights: 103 initial value 94.429328 final value 94.054434 converged Fitting Repeat 3 # weights: 103 initial value 105.896439 final value 94.054806 converged Fitting Repeat 4 # weights: 103 initial value 98.829632 final value 94.054251 converged Fitting Repeat 5 # weights: 103 initial value 99.942165 final value 94.054530 converged Fitting Repeat 1 # weights: 305 initial value 98.226229 iter 10 value 94.057519 iter 20 value 92.147055 iter 30 value 91.361277 iter 40 value 91.281610 final value 91.259795 converged Fitting Repeat 2 # weights: 305 initial value 95.838887 iter 10 value 94.058598 iter 20 value 93.837637 iter 30 value 82.569627 iter 40 value 81.942629 iter 50 value 81.643053 iter 60 value 81.629287 iter 70 value 81.610132 iter 80 value 81.610060 iter 90 value 81.364371 iter 100 value 81.331200 final value 81.331200 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.114533 final value 94.057910 converged Fitting Repeat 4 # weights: 305 initial value 94.804058 iter 10 value 93.332932 iter 20 value 93.330321 iter 30 value 92.673154 iter 40 value 83.610641 iter 50 value 80.308293 iter 60 value 79.396345 iter 70 value 78.685003 iter 80 value 78.629009 final value 78.628933 converged Fitting Repeat 5 # weights: 305 initial value 103.353382 iter 10 value 94.057565 iter 20 value 94.052676 iter 30 value 90.377249 iter 40 value 86.091509 iter 50 value 85.198690 iter 60 value 84.166937 iter 70 value 84.125588 final value 84.125574 converged Fitting Repeat 1 # weights: 507 initial value 112.943507 iter 10 value 94.061176 iter 20 value 93.610326 iter 30 value 92.829301 final value 92.828966 converged Fitting Repeat 2 # weights: 507 initial value 120.908371 iter 10 value 92.930561 iter 20 value 92.789171 iter 30 value 92.652255 iter 40 value 92.135897 iter 50 value 82.340606 iter 60 value 82.315904 iter 70 value 81.846802 iter 80 value 80.357647 iter 90 value 80.351748 iter 100 value 80.351154 final value 80.351154 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 98.482000 iter 10 value 94.061096 iter 20 value 94.052961 iter 30 value 92.726539 iter 40 value 87.175489 iter 50 value 85.912347 iter 60 value 85.779354 final value 85.779353 converged Fitting Repeat 4 # weights: 507 initial value 107.660155 iter 10 value 93.721045 iter 20 value 92.946011 iter 30 value 92.932204 iter 40 value 92.665408 iter 50 value 92.648815 iter 60 value 92.648076 iter 70 value 92.376352 iter 80 value 88.477107 iter 90 value 87.481589 iter 100 value 86.473894 final value 86.473894 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 94.408678 iter 10 value 93.341667 iter 20 value 93.336213 iter 30 value 93.326298 final value 92.923455 converged Fitting Repeat 1 # weights: 103 initial value 94.325812 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.365056 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 109.474714 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 107.454646 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 105.552700 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 101.848294 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 114.488433 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 102.034765 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 103.069273 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 120.163111 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 99.044502 iter 10 value 93.672973 iter 10 value 93.672973 iter 10 value 93.672973 final value 93.672973 converged Fitting Repeat 2 # weights: 507 initial value 103.975798 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 97.759646 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 95.337745 final value 93.915746 converged Fitting Repeat 5 # weights: 507 initial value 96.698250 final value 92.514379 converged Fitting Repeat 1 # weights: 103 initial value 104.173046 iter 10 value 94.056789 iter 20 value 93.902211 iter 30 value 93.760497 iter 40 value 93.284031 iter 50 value 84.748106 iter 60 value 83.799984 iter 70 value 83.216910 iter 80 value 82.990125 iter 90 value 82.540278 iter 100 value 82.464352 final value 82.464352 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.182540 iter 10 value 89.854806 iter 20 value 86.160706 iter 30 value 83.926736 iter 40 value 82.685305 iter 50 value 82.483835 iter 60 value 82.464315 final value 82.464300 converged Fitting Repeat 3 # weights: 103 initial value 98.371045 iter 10 value 90.008309 iter 20 value 88.862656 iter 30 value 88.345316 iter 40 value 88.027397 iter 50 value 88.000463 final value 88.000451 converged Fitting Repeat 4 # weights: 103 initial value 100.547020 iter 10 value 93.718199 iter 20 value 93.658120 iter 30 value 87.277650 iter 40 value 85.085480 iter 50 value 83.953960 iter 60 value 83.860725 iter 70 value 83.343715 iter 80 value 83.015518 iter 90 value 82.983786 final value 82.983502 converged Fitting Repeat 5 # weights: 103 initial value 103.572006 iter 10 value 91.064314 iter 20 value 83.062983 iter 30 value 80.917075 iter 40 value 80.806358 iter 50 value 80.347559 iter 60 value 80.022595 iter 70 value 79.647539 iter 80 value 79.450071 final value 79.447728 converged Fitting Repeat 1 # weights: 305 initial value 109.059569 iter 10 value 93.980103 iter 20 value 93.196199 iter 30 value 88.500287 iter 40 value 83.726503 iter 50 value 83.367338 iter 60 value 81.054177 iter 70 value 80.212855 iter 80 value 79.564471 iter 90 value 79.303068 iter 100 value 79.017226 final value 79.017226 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.444480 iter 10 value 94.139498 iter 20 value 91.743142 iter 30 value 88.781556 iter 40 value 87.988246 iter 50 value 87.874743 iter 60 value 87.834638 iter 70 value 87.754313 iter 80 value 85.615234 iter 90 value 82.416909 iter 100 value 81.029927 final value 81.029927 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.165361 iter 10 value 94.027098 iter 20 value 90.982202 iter 30 value 88.164550 iter 40 value 85.119742 iter 50 value 81.309517 iter 60 value 80.641194 iter 70 value 80.468822 iter 80 value 79.842964 iter 90 value 79.410931 iter 100 value 79.088526 final value 79.088526 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.405124 iter 10 value 92.688104 iter 20 value 86.594529 iter 30 value 81.580255 iter 40 value 80.133948 iter 50 value 79.920690 iter 60 value 79.732460 iter 70 value 79.624769 iter 80 value 79.576973 iter 90 value 79.229444 iter 100 value 78.962240 final value 78.962240 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.903731 iter 10 value 92.186605 iter 20 value 88.468401 iter 30 value 87.196670 iter 40 value 83.110950 iter 50 value 80.914206 iter 60 value 80.371994 iter 70 value 79.755956 iter 80 value 79.634405 iter 90 value 79.596983 iter 100 value 79.535903 final value 79.535903 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.460302 iter 10 value 93.975465 iter 20 value 92.056957 iter 30 value 87.185456 iter 40 value 83.871483 iter 50 value 81.310356 iter 60 value 80.135016 iter 70 value 79.603553 iter 80 value 79.374154 iter 90 value 79.094259 iter 100 value 78.742889 final value 78.742889 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.446278 iter 10 value 93.720215 iter 20 value 84.467484 iter 30 value 82.307743 iter 40 value 81.975071 iter 50 value 81.371223 iter 60 value 79.848853 iter 70 value 79.169498 iter 80 value 78.985071 iter 90 value 78.863694 iter 100 value 78.637892 final value 78.637892 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.884238 iter 10 value 93.295324 iter 20 value 89.760376 iter 30 value 85.482793 iter 40 value 84.129964 iter 50 value 83.381859 iter 60 value 83.135693 iter 70 value 81.428638 iter 80 value 79.527915 iter 90 value 78.686579 iter 100 value 78.255218 final value 78.255218 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.661133 iter 10 value 97.318155 iter 20 value 93.594632 iter 30 value 90.653709 iter 40 value 87.855109 iter 50 value 86.126633 iter 60 value 84.725743 iter 70 value 80.141448 iter 80 value 79.408829 iter 90 value 79.089612 iter 100 value 79.003863 final value 79.003863 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 111.298375 iter 10 value 94.033326 iter 20 value 93.572734 iter 30 value 86.060386 iter 40 value 83.004922 iter 50 value 80.996798 iter 60 value 79.460312 iter 70 value 78.729775 iter 80 value 78.596931 iter 90 value 78.407682 iter 100 value 78.240365 final value 78.240365 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.031208 final value 93.917316 converged Fitting Repeat 2 # weights: 103 initial value 104.597985 final value 94.054720 converged Fitting Repeat 3 # weights: 103 initial value 101.023853 final value 94.054730 converged Fitting Repeat 4 # weights: 103 initial value 95.901067 final value 94.054419 converged Fitting Repeat 5 # weights: 103 initial value 103.777466 iter 10 value 94.070697 iter 20 value 94.067216 iter 30 value 94.038140 iter 40 value 93.605209 iter 50 value 93.548774 iter 60 value 93.547897 final value 93.547789 converged Fitting Repeat 1 # weights: 305 initial value 96.380613 iter 10 value 93.920649 iter 20 value 93.916355 final value 93.916150 converged Fitting Repeat 2 # weights: 305 initial value 106.026894 iter 10 value 94.057519 iter 20 value 93.978562 iter 30 value 93.142418 iter 40 value 87.132471 iter 50 value 84.861120 iter 60 value 80.369066 iter 70 value 79.621195 iter 80 value 78.741193 iter 90 value 77.773097 iter 100 value 77.771707 final value 77.771707 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.249438 iter 10 value 94.057564 iter 20 value 90.909431 iter 30 value 85.789978 iter 40 value 85.290521 iter 50 value 84.741521 iter 60 value 82.280305 iter 70 value 82.176621 iter 80 value 82.044677 iter 90 value 82.039941 iter 100 value 81.478909 final value 81.478909 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.105746 iter 10 value 88.965827 iter 20 value 88.856291 iter 30 value 88.849855 final value 88.703206 converged Fitting Repeat 5 # weights: 305 initial value 104.354754 iter 10 value 94.057393 iter 20 value 93.965646 iter 30 value 89.131753 iter 40 value 89.128689 iter 50 value 89.124497 iter 60 value 89.122139 iter 70 value 89.109230 iter 80 value 87.193788 iter 90 value 81.123937 iter 100 value 81.117080 final value 81.117080 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.562568 iter 10 value 90.914020 iter 20 value 89.469345 iter 30 value 89.434988 iter 40 value 88.738061 iter 50 value 81.003743 iter 60 value 80.759278 iter 70 value 80.757025 iter 80 value 80.733065 iter 90 value 80.730199 iter 100 value 80.668171 final value 80.668171 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.737820 iter 10 value 93.923926 iter 20 value 93.525587 iter 30 value 89.570081 iter 40 value 89.256224 iter 50 value 89.254546 iter 60 value 89.226488 iter 70 value 86.876044 iter 80 value 86.805319 iter 90 value 85.923744 iter 100 value 85.749817 final value 85.749817 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.692511 iter 10 value 92.952471 iter 20 value 87.051154 iter 30 value 86.995334 iter 40 value 86.890522 iter 50 value 86.864026 final value 86.863159 converged Fitting Repeat 4 # weights: 507 initial value 96.688881 iter 10 value 94.050386 iter 20 value 93.681082 iter 30 value 93.638779 final value 93.522440 converged Fitting Repeat 5 # weights: 507 initial value 94.945137 iter 10 value 93.923708 iter 20 value 93.917509 final value 93.916485 converged Fitting Repeat 1 # weights: 103 initial value 101.064149 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.559417 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.268435 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.127249 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.104461 final value 94.466823 converged Fitting Repeat 1 # weights: 305 initial value 104.684445 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.160094 iter 10 value 92.837252 iter 20 value 92.394207 final value 92.392765 converged Fitting Repeat 3 # weights: 305 initial value 95.224416 final value 94.436782 converged Fitting Repeat 4 # weights: 305 initial value 117.803686 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 99.886347 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.236692 final value 94.332857 converged Fitting Repeat 2 # weights: 507 initial value 108.601860 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 104.865613 iter 10 value 94.194892 final value 94.144481 converged Fitting Repeat 4 # weights: 507 initial value 117.658995 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 94.753082 final value 94.466822 converged Fitting Repeat 1 # weights: 103 initial value 102.733973 iter 10 value 93.469847 iter 20 value 88.822285 iter 30 value 87.101948 iter 40 value 86.034062 iter 50 value 85.777207 iter 60 value 85.746267 iter 60 value 85.746266 iter 60 value 85.746266 final value 85.746266 converged Fitting Repeat 2 # weights: 103 initial value 97.915530 iter 10 value 94.490295 iter 20 value 94.478588 iter 30 value 86.473990 iter 40 value 86.357214 iter 50 value 86.168550 iter 60 value 86.030328 iter 70 value 85.935636 final value 85.935104 converged Fitting Repeat 3 # weights: 103 initial value 108.015741 iter 10 value 94.373832 iter 20 value 89.198900 iter 30 value 87.578224 iter 40 value 86.031231 iter 50 value 85.928114 final value 85.917007 converged Fitting Repeat 4 # weights: 103 initial value 99.771565 iter 10 value 94.581931 iter 20 value 94.487380 iter 30 value 94.397886 iter 40 value 93.266949 iter 50 value 86.112839 iter 60 value 85.842921 iter 70 value 85.289782 iter 80 value 85.277942 iter 90 value 85.274677 final value 85.273965 converged Fitting Repeat 5 # weights: 103 initial value 102.014417 iter 10 value 94.229194 iter 20 value 86.298886 iter 30 value 86.049903 iter 40 value 85.917184 iter 40 value 85.917183 iter 40 value 85.917183 final value 85.917183 converged Fitting Repeat 1 # weights: 305 initial value 102.858782 iter 10 value 95.258725 iter 20 value 94.605582 iter 30 value 92.036748 iter 40 value 86.270134 iter 50 value 85.874121 iter 60 value 84.265377 iter 70 value 82.803271 iter 80 value 82.266259 iter 90 value 82.144713 iter 100 value 82.136335 final value 82.136335 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.476175 iter 10 value 94.525325 iter 20 value 90.186838 iter 30 value 84.868457 iter 40 value 84.555691 iter 50 value 84.276987 iter 60 value 84.113617 iter 70 value 84.096014 iter 80 value 82.987692 iter 90 value 82.744104 iter 100 value 82.361521 final value 82.361521 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.966343 iter 10 value 94.367734 iter 20 value 88.580515 iter 30 value 85.802129 iter 40 value 84.033386 iter 50 value 83.008720 iter 60 value 82.854283 iter 70 value 82.736878 iter 80 value 82.563464 iter 90 value 82.533876 iter 100 value 82.508637 final value 82.508637 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.216899 iter 10 value 94.439523 iter 20 value 93.155640 iter 30 value 91.134982 iter 40 value 87.872584 iter 50 value 85.020824 iter 60 value 83.891590 iter 70 value 83.309949 iter 80 value 82.990438 iter 90 value 82.276396 iter 100 value 81.956442 final value 81.956442 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 116.961942 iter 10 value 94.436015 iter 20 value 87.216175 iter 30 value 85.538144 iter 40 value 84.841958 iter 50 value 84.067912 iter 60 value 83.064890 iter 70 value 82.208106 iter 80 value 82.058406 iter 90 value 81.845288 iter 100 value 81.833149 final value 81.833149 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.761808 iter 10 value 94.515492 iter 20 value 90.101678 iter 30 value 85.585323 iter 40 value 84.480298 iter 50 value 83.404301 iter 60 value 83.309076 iter 70 value 82.851210 iter 80 value 82.664550 iter 90 value 82.463339 iter 100 value 82.268149 final value 82.268149 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.561124 iter 10 value 94.676497 iter 20 value 90.279677 iter 30 value 86.482356 iter 40 value 84.539763 iter 50 value 83.855723 iter 60 value 83.251193 iter 70 value 83.086485 iter 80 value 82.809079 iter 90 value 82.524568 iter 100 value 82.137679 final value 82.137679 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.191961 iter 10 value 94.575380 iter 20 value 88.868012 iter 30 value 87.598013 iter 40 value 84.949585 iter 50 value 83.451750 iter 60 value 82.871613 iter 70 value 82.114763 iter 80 value 81.977546 iter 90 value 81.588124 iter 100 value 81.412577 final value 81.412577 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.376593 iter 10 value 94.112890 iter 20 value 91.659795 iter 30 value 89.502588 iter 40 value 87.765793 iter 50 value 86.517972 iter 60 value 85.523021 iter 70 value 84.878221 iter 80 value 83.977654 iter 90 value 83.353129 iter 100 value 83.292209 final value 83.292209 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.212736 iter 10 value 95.056051 iter 20 value 88.906596 iter 30 value 86.316012 iter 40 value 85.572627 iter 50 value 82.780979 iter 60 value 82.350929 iter 70 value 82.287814 iter 80 value 82.187196 iter 90 value 82.110899 iter 100 value 81.896029 final value 81.896029 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.937220 final value 94.486075 converged Fitting Repeat 2 # weights: 103 initial value 96.300028 final value 94.485840 converged Fitting Repeat 3 # weights: 103 initial value 104.631697 iter 10 value 94.466409 iter 20 value 87.955347 iter 30 value 87.277981 iter 40 value 86.641270 iter 50 value 86.628192 final value 86.626033 converged Fitting Repeat 4 # weights: 103 initial value 100.295122 iter 10 value 94.486308 final value 94.484390 converged Fitting Repeat 5 # weights: 103 initial value 101.571376 iter 10 value 94.468314 iter 20 value 94.458122 final value 94.254619 converged Fitting Repeat 1 # weights: 305 initial value 115.876479 iter 10 value 94.471509 iter 20 value 94.467620 iter 30 value 87.714659 iter 40 value 86.766732 iter 50 value 86.708715 iter 60 value 86.667609 iter 70 value 86.629568 iter 80 value 85.917255 iter 90 value 83.966807 iter 100 value 83.910672 final value 83.910672 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 117.711236 iter 10 value 94.489292 iter 20 value 94.479556 iter 30 value 88.135741 iter 40 value 87.836624 iter 50 value 87.085612 iter 60 value 85.057311 iter 70 value 84.653397 iter 80 value 82.774153 iter 90 value 82.474254 iter 100 value 82.472527 final value 82.472527 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.893337 iter 10 value 94.489044 iter 20 value 94.003290 iter 30 value 91.216818 iter 40 value 91.203194 iter 50 value 91.182759 iter 60 value 90.552937 iter 70 value 90.544802 final value 90.544717 converged Fitting Repeat 4 # weights: 305 initial value 100.058565 iter 10 value 94.471414 iter 20 value 94.429217 iter 30 value 92.613666 iter 40 value 92.393409 final value 92.393385 converged Fitting Repeat 5 # weights: 305 initial value 101.121338 iter 10 value 94.485810 iter 20 value 92.914211 final value 92.889906 converged Fitting Repeat 1 # weights: 507 initial value 116.157719 iter 10 value 94.156807 iter 20 value 93.885486 iter 30 value 93.878478 iter 40 value 93.872613 iter 50 value 92.449448 iter 60 value 85.478230 iter 70 value 85.199947 iter 80 value 85.151051 iter 90 value 84.385774 iter 100 value 84.335890 final value 84.335890 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.174715 iter 10 value 94.474879 iter 20 value 94.467384 iter 30 value 86.980651 iter 40 value 86.680508 iter 50 value 86.164995 iter 60 value 83.581377 iter 70 value 83.417296 iter 80 value 83.416338 iter 90 value 83.398712 iter 100 value 83.286978 final value 83.286978 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.316790 iter 10 value 94.474788 iter 20 value 94.467166 iter 30 value 94.323042 iter 30 value 94.323042 iter 30 value 94.323042 final value 94.323042 converged Fitting Repeat 4 # weights: 507 initial value 97.955353 iter 10 value 94.436211 iter 20 value 94.428632 iter 30 value 94.428291 final value 94.428251 converged Fitting Repeat 5 # weights: 507 initial value 95.021584 iter 10 value 94.489191 iter 20 value 93.984536 iter 30 value 86.366623 iter 40 value 83.749643 iter 50 value 83.745123 iter 60 value 83.737013 iter 70 value 83.729505 iter 80 value 83.728710 iter 90 value 83.700903 iter 100 value 83.476451 final value 83.476451 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 135.095359 iter 10 value 118.232221 iter 20 value 117.782249 iter 30 value 108.791980 iter 40 value 106.171993 iter 50 value 103.607007 iter 60 value 102.142179 iter 70 value 101.492908 iter 80 value 101.201908 iter 90 value 101.079810 iter 100 value 100.795200 final value 100.795200 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 145.127346 iter 10 value 117.905082 iter 20 value 115.331365 iter 30 value 108.789060 iter 40 value 107.643739 iter 50 value 106.870467 iter 60 value 106.142841 iter 70 value 102.762110 iter 80 value 102.347149 iter 90 value 101.629783 iter 100 value 101.435461 final value 101.435461 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 125.641295 iter 10 value 117.915615 iter 20 value 109.492402 iter 30 value 108.458327 iter 40 value 108.113136 iter 50 value 105.013237 iter 60 value 104.786502 iter 70 value 104.567805 iter 80 value 103.459983 iter 90 value 102.578512 iter 100 value 102.183443 final value 102.183443 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 135.769523 iter 10 value 116.782522 iter 20 value 108.162352 iter 30 value 107.565647 iter 40 value 105.844826 iter 50 value 102.972816 iter 60 value 102.426291 iter 70 value 101.926289 iter 80 value 101.377549 iter 90 value 101.100048 iter 100 value 100.919387 final value 100.919387 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 139.829785 iter 10 value 117.981790 iter 20 value 117.584089 iter 30 value 111.247074 iter 40 value 106.724038 iter 50 value 104.744526 iter 60 value 102.991703 iter 70 value 101.486446 iter 80 value 100.982962 iter 90 value 100.774076 iter 100 value 100.609937 final value 100.609937 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Feb 3 23:20:27 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 38.951 0.826 116.466
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.381 | 0.509 | 34.892 | |
FreqInteractors | 0.211 | 0.015 | 0.226 | |
calculateAAC | 0.036 | 0.003 | 0.039 | |
calculateAutocor | 0.291 | 0.017 | 0.309 | |
calculateCTDC | 0.075 | 0.001 | 0.076 | |
calculateCTDD | 0.501 | 0.001 | 0.502 | |
calculateCTDT | 0.186 | 0.001 | 0.187 | |
calculateCTriad | 0.391 | 0.007 | 0.398 | |
calculateDC | 0.081 | 0.001 | 0.081 | |
calculateF | 0.292 | 0.006 | 0.298 | |
calculateKSAAP | 0.087 | 0.001 | 0.089 | |
calculateQD_Sm | 1.812 | 0.021 | 1.833 | |
calculateTC | 1.488 | 0.026 | 1.514 | |
calculateTC_Sm | 0.295 | 0.001 | 0.296 | |
corr_plot | 34.822 | 0.332 | 35.228 | |
enrichfindP | 0.543 | 0.035 | 8.969 | |
enrichfind_hp | 0.075 | 0.002 | 1.041 | |
enrichplot | 0.379 | 0.003 | 0.382 | |
filter_missing_values | 0.002 | 0.000 | 0.001 | |
getFASTA | 0.288 | 0.007 | 4.279 | |
getHPI | 0.001 | 0.001 | 0.001 | |
get_negativePPI | 0.001 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.000 | 0.002 | |
plotPPI | 0.070 | 0.002 | 0.073 | |
pred_ensembel | 12.841 | 0.100 | 11.751 | |
var_imp | 35.983 | 0.337 | 36.369 | |