Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-03-17 12:07 -0400 (Mon, 17 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4756 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4487 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4514 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4441 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4399 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-03-14 02:06:38 -0400 (Fri, 14 Mar 2025) |
EndedAt: 2025-03-14 02:12:55 -0400 (Fri, 14 Mar 2025) |
EllapsedTime: 377.2 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck' * using R version 4.4.3 (2025-02-28 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.12.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 35.39 2.00 37.59 var_imp 35.12 1.33 36.45 corr_plot 34.25 1.87 36.12 pred_ensembel 13.83 0.46 12.88 enrichfindP 0.67 0.08 14.31 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 102.195015 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.174175 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.069180 final value 93.915746 converged Fitting Repeat 4 # weights: 103 initial value 96.872138 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 102.784104 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 96.207047 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 105.521783 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 116.054973 iter 10 value 93.601517 final value 93.601515 converged Fitting Repeat 4 # weights: 305 initial value 106.872282 final value 93.731944 converged Fitting Repeat 5 # weights: 305 initial value 115.014016 final value 93.915746 converged Fitting Repeat 1 # weights: 507 initial value 93.406530 iter 10 value 86.365562 iter 20 value 86.365156 final value 86.365058 converged Fitting Repeat 2 # weights: 507 initial value 116.100062 final value 93.915746 converged Fitting Repeat 3 # weights: 507 initial value 98.053903 final value 93.915746 converged Fitting Repeat 4 # weights: 507 initial value 102.394829 final value 93.915746 converged Fitting Repeat 5 # weights: 507 initial value 103.764738 iter 10 value 89.998463 iter 20 value 86.860825 iter 30 value 86.839473 final value 86.839258 converged Fitting Repeat 1 # weights: 103 initial value 96.417405 iter 10 value 93.946285 iter 20 value 88.839575 iter 30 value 87.172843 iter 40 value 86.726449 iter 50 value 85.714306 iter 60 value 84.770843 iter 70 value 84.425519 iter 80 value 84.018911 iter 90 value 82.994903 iter 100 value 82.926715 final value 82.926715 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.043619 iter 10 value 94.056724 iter 20 value 93.874473 iter 30 value 93.653820 iter 40 value 93.597882 iter 50 value 87.808291 iter 60 value 86.527285 iter 70 value 86.281658 iter 80 value 86.264861 iter 90 value 85.622088 iter 100 value 85.459152 final value 85.459152 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.198507 iter 10 value 94.062183 iter 20 value 93.842167 iter 30 value 92.443559 iter 40 value 88.973068 iter 50 value 88.486425 iter 60 value 85.930334 iter 70 value 84.019785 iter 80 value 83.342129 iter 90 value 83.223144 iter 100 value 82.990934 final value 82.990934 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.627639 iter 10 value 93.031544 iter 20 value 86.838534 iter 30 value 86.674648 iter 40 value 85.730748 iter 50 value 85.460303 iter 60 value 85.455867 final value 85.455864 converged Fitting Repeat 5 # weights: 103 initial value 99.121148 iter 10 value 92.299179 iter 20 value 85.294730 iter 30 value 84.962110 iter 40 value 84.573823 iter 50 value 84.478946 iter 60 value 84.029603 iter 70 value 83.990950 iter 80 value 83.389150 iter 90 value 83.030746 iter 100 value 82.633123 final value 82.633123 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.548761 iter 10 value 93.992407 iter 20 value 88.644104 iter 30 value 86.711834 iter 40 value 86.316705 iter 50 value 85.635701 iter 60 value 85.303581 iter 70 value 85.124993 iter 80 value 84.931107 iter 90 value 84.829410 iter 100 value 84.684129 final value 84.684129 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.628304 iter 10 value 94.422513 iter 20 value 94.060628 iter 30 value 87.349804 iter 40 value 87.142287 iter 50 value 84.615642 iter 60 value 83.473133 iter 70 value 83.288858 iter 80 value 82.843112 iter 90 value 82.276980 iter 100 value 82.141525 final value 82.141525 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.815119 iter 10 value 94.949653 iter 20 value 90.860933 iter 30 value 88.505571 iter 40 value 84.237607 iter 50 value 82.974770 iter 60 value 82.494365 iter 70 value 82.326873 iter 80 value 82.287153 iter 90 value 81.846696 iter 100 value 81.817830 final value 81.817830 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.290205 iter 10 value 94.040126 iter 20 value 93.533276 iter 30 value 91.765580 iter 40 value 91.042247 iter 50 value 85.926454 iter 60 value 84.453406 iter 70 value 83.656342 iter 80 value 83.050654 iter 90 value 82.754326 iter 100 value 82.506452 final value 82.506452 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 116.500765 iter 10 value 94.429685 iter 20 value 92.654357 iter 30 value 89.643122 iter 40 value 88.122160 iter 50 value 84.778448 iter 60 value 83.786729 iter 70 value 83.639995 iter 80 value 83.158807 iter 90 value 82.836116 iter 100 value 81.887335 final value 81.887335 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.736457 iter 10 value 94.069215 iter 20 value 93.705607 iter 30 value 93.370228 iter 40 value 89.214419 iter 50 value 84.424305 iter 60 value 83.714513 iter 70 value 83.451782 iter 80 value 83.228377 iter 90 value 82.789910 iter 100 value 82.311800 final value 82.311800 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.158672 iter 10 value 93.867538 iter 20 value 85.662835 iter 30 value 83.706365 iter 40 value 82.570653 iter 50 value 82.103220 iter 60 value 81.756122 iter 70 value 81.373361 iter 80 value 81.204355 iter 90 value 81.173022 iter 100 value 81.044255 final value 81.044255 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.178551 iter 10 value 94.272235 iter 20 value 91.452505 iter 30 value 88.186470 iter 40 value 84.783946 iter 50 value 82.645044 iter 60 value 82.284618 iter 70 value 81.765577 iter 80 value 81.648252 iter 90 value 81.506083 iter 100 value 81.453982 final value 81.453982 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.578928 iter 10 value 93.991710 iter 20 value 93.669167 iter 30 value 92.342708 iter 40 value 90.643868 iter 50 value 89.253768 iter 60 value 84.846895 iter 70 value 84.116580 iter 80 value 83.900090 iter 90 value 83.763366 iter 100 value 82.716821 final value 82.716821 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.941885 iter 10 value 89.790896 iter 20 value 85.283272 iter 30 value 83.607626 iter 40 value 82.833874 iter 50 value 82.384629 iter 60 value 82.112564 iter 70 value 81.715440 iter 80 value 81.664090 iter 90 value 81.644445 iter 100 value 81.429033 final value 81.429033 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 113.690185 iter 10 value 94.147693 iter 20 value 94.131628 iter 30 value 94.060864 final value 94.052914 converged Fitting Repeat 2 # weights: 103 initial value 105.735640 final value 94.054828 converged Fitting Repeat 3 # weights: 103 initial value 100.339289 iter 10 value 93.603490 final value 93.600888 converged Fitting Repeat 4 # weights: 103 initial value 109.645193 final value 94.054804 converged Fitting Repeat 5 # weights: 103 initial value 96.233463 final value 94.054460 converged Fitting Repeat 1 # weights: 305 initial value 99.011005 iter 10 value 93.920433 iter 20 value 93.914169 iter 30 value 88.667801 iter 40 value 88.601626 iter 50 value 87.233734 iter 60 value 85.758816 iter 70 value 85.749996 iter 80 value 84.807031 iter 90 value 84.592570 iter 100 value 84.434095 final value 84.434095 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.053796 iter 10 value 94.057464 iter 20 value 94.052916 iter 30 value 90.736627 final value 90.639840 converged Fitting Repeat 3 # weights: 305 initial value 100.431482 iter 10 value 93.905703 iter 20 value 92.692003 iter 30 value 86.533650 iter 40 value 86.167929 final value 86.166209 converged Fitting Repeat 4 # weights: 305 initial value 102.472314 iter 10 value 93.936549 iter 20 value 89.720184 iter 30 value 84.738952 iter 40 value 84.479863 iter 50 value 83.285541 iter 60 value 83.107036 iter 70 value 83.105623 iter 80 value 83.105035 iter 90 value 83.087346 iter 100 value 82.150406 final value 82.150406 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.764007 iter 10 value 94.058173 iter 20 value 94.053443 final value 94.053312 converged Fitting Repeat 1 # weights: 507 initial value 99.360276 iter 10 value 94.059310 iter 20 value 93.578049 iter 30 value 93.518391 iter 40 value 88.760268 iter 50 value 83.914370 iter 60 value 82.623187 iter 70 value 82.561420 iter 80 value 82.550802 iter 90 value 82.460065 iter 100 value 82.277757 final value 82.277757 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.324525 iter 10 value 94.059012 iter 20 value 93.892962 iter 30 value 85.972826 iter 40 value 85.782527 iter 50 value 85.782351 iter 60 value 85.782300 final value 85.782295 converged Fitting Repeat 3 # weights: 507 initial value 94.077755 iter 10 value 94.054118 iter 20 value 93.707603 iter 30 value 88.146991 iter 40 value 87.789021 iter 50 value 86.016955 iter 60 value 82.245611 iter 70 value 81.713015 iter 80 value 80.941178 iter 90 value 80.672167 iter 100 value 80.178887 final value 80.178887 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 137.187272 iter 10 value 94.090960 iter 20 value 93.984806 iter 30 value 86.411499 iter 40 value 86.406721 iter 50 value 86.372485 iter 60 value 86.239644 iter 70 value 85.526904 iter 80 value 84.736575 iter 90 value 83.675081 iter 100 value 83.665161 final value 83.665161 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.489436 iter 10 value 93.275095 iter 20 value 92.730501 iter 30 value 92.728677 iter 40 value 92.498811 iter 50 value 92.478407 iter 60 value 92.224805 iter 70 value 91.904908 iter 80 value 91.589262 final value 91.560867 converged Fitting Repeat 1 # weights: 103 initial value 94.691224 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.546092 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 113.201122 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 106.304165 final value 94.008696 converged Fitting Repeat 5 # weights: 103 initial value 99.797211 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 101.018565 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.408761 iter 10 value 83.438413 final value 83.430740 converged Fitting Repeat 3 # weights: 305 initial value 102.930097 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 100.146528 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 101.255914 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 98.923739 final value 94.022599 converged Fitting Repeat 2 # weights: 507 initial value 118.593526 final value 94.052911 converged Fitting Repeat 3 # weights: 507 initial value 105.509236 iter 10 value 92.811194 final value 92.809877 converged Fitting Repeat 4 # weights: 507 initial value 99.766999 iter 10 value 85.573025 iter 20 value 83.770246 iter 30 value 83.313434 iter 40 value 83.125224 iter 50 value 83.096593 iter 60 value 83.073675 final value 83.073530 converged Fitting Repeat 5 # weights: 507 initial value 105.761046 final value 94.008696 converged Fitting Repeat 1 # weights: 103 initial value 111.761959 iter 10 value 94.054746 iter 20 value 89.437476 iter 30 value 86.927356 iter 40 value 85.473744 iter 50 value 84.612342 iter 60 value 84.153806 iter 70 value 84.121831 iter 80 value 84.030744 iter 90 value 83.937477 iter 100 value 83.925134 final value 83.925134 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 95.960877 iter 10 value 94.051738 iter 20 value 92.891817 iter 30 value 92.383166 iter 40 value 92.174863 iter 50 value 91.778272 iter 60 value 91.550358 iter 70 value 91.452005 iter 80 value 91.449201 iter 90 value 90.766494 iter 100 value 88.853004 final value 88.853004 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.763431 iter 10 value 93.933571 iter 20 value 92.883132 iter 30 value 87.734603 iter 40 value 86.518244 iter 50 value 85.737012 iter 60 value 83.372303 iter 70 value 82.908305 iter 80 value 82.792095 iter 90 value 82.636459 iter 100 value 82.623523 final value 82.623523 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 95.957112 iter 10 value 92.547174 iter 20 value 86.190868 iter 30 value 84.392791 iter 40 value 83.898813 iter 50 value 83.832057 iter 60 value 83.785948 iter 70 value 83.770951 final value 83.770950 converged Fitting Repeat 5 # weights: 103 initial value 96.972558 iter 10 value 93.937888 iter 20 value 91.435962 iter 30 value 88.898798 iter 40 value 86.184697 iter 50 value 85.520494 iter 60 value 83.487071 iter 70 value 83.110022 iter 80 value 82.653809 iter 90 value 82.612602 final value 82.612600 converged Fitting Repeat 1 # weights: 305 initial value 105.481130 iter 10 value 94.104722 iter 20 value 91.895846 iter 30 value 88.249987 iter 40 value 87.979090 iter 50 value 87.048758 iter 60 value 86.788798 iter 70 value 85.693050 iter 80 value 84.083342 iter 90 value 82.438519 iter 100 value 81.959664 final value 81.959664 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.802410 iter 10 value 94.001677 iter 20 value 85.724665 iter 30 value 84.215657 iter 40 value 84.151370 iter 50 value 83.791767 iter 60 value 83.076242 iter 70 value 82.560322 iter 80 value 82.031860 iter 90 value 81.823567 iter 100 value 81.663619 final value 81.663619 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.013795 iter 10 value 89.317037 iter 20 value 87.442570 iter 30 value 85.238847 iter 40 value 84.241051 iter 50 value 83.504899 iter 60 value 82.235813 iter 70 value 81.928166 iter 80 value 81.738167 iter 90 value 81.512935 iter 100 value 81.254839 final value 81.254839 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.923141 iter 10 value 94.063769 iter 20 value 93.309408 iter 30 value 86.663194 iter 40 value 86.193693 iter 50 value 85.569113 iter 60 value 84.471136 iter 70 value 83.983242 iter 80 value 83.043676 iter 90 value 82.880460 iter 100 value 82.710683 final value 82.710683 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.756010 iter 10 value 94.120434 iter 20 value 93.891535 iter 30 value 92.376794 iter 40 value 91.698282 iter 50 value 91.309693 iter 60 value 88.250787 iter 70 value 86.362726 iter 80 value 85.557816 iter 90 value 85.069063 iter 100 value 84.527762 final value 84.527762 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 150.935212 iter 10 value 101.784247 iter 20 value 94.445612 iter 30 value 91.630935 iter 40 value 86.347848 iter 50 value 86.180896 iter 60 value 85.877158 iter 70 value 84.218781 iter 80 value 82.106810 iter 90 value 81.494582 iter 100 value 81.251725 final value 81.251725 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 128.423380 iter 10 value 96.205959 iter 20 value 90.172251 iter 30 value 86.325289 iter 40 value 85.872310 iter 50 value 84.019827 iter 60 value 81.710366 iter 70 value 81.557249 iter 80 value 81.479836 iter 90 value 81.180293 iter 100 value 80.938344 final value 80.938344 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.277616 iter 10 value 94.013761 iter 20 value 91.982641 iter 30 value 86.637147 iter 40 value 83.982130 iter 50 value 83.153687 iter 60 value 82.744312 iter 70 value 82.518261 iter 80 value 82.497741 iter 90 value 82.465389 iter 100 value 82.459793 final value 82.459793 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.169499 iter 10 value 94.234225 iter 20 value 86.738315 iter 30 value 84.476453 iter 40 value 84.111877 iter 50 value 83.289949 iter 60 value 82.894353 iter 70 value 82.200342 iter 80 value 81.933167 iter 90 value 81.533652 iter 100 value 81.369010 final value 81.369010 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.748722 iter 10 value 93.714797 iter 20 value 86.174368 iter 30 value 84.879583 iter 40 value 84.515928 iter 50 value 83.722023 iter 60 value 83.550149 iter 70 value 83.430789 iter 80 value 83.262028 iter 90 value 83.106808 iter 100 value 82.992579 final value 82.992579 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.824196 final value 94.054565 converged Fitting Repeat 2 # weights: 103 initial value 104.433820 final value 94.054685 converged Fitting Repeat 3 # weights: 103 initial value 101.723007 iter 10 value 94.054641 iter 20 value 93.746674 iter 30 value 83.340121 final value 83.318906 converged Fitting Repeat 4 # weights: 103 initial value 96.260259 final value 94.054480 converged Fitting Repeat 5 # weights: 103 initial value 94.197335 final value 94.054755 converged Fitting Repeat 1 # weights: 305 initial value 94.720966 iter 10 value 93.095584 iter 20 value 92.897595 iter 30 value 87.029587 iter 40 value 84.585014 iter 50 value 83.300082 iter 60 value 83.226772 final value 83.175469 converged Fitting Repeat 2 # weights: 305 initial value 99.881066 iter 10 value 94.057806 iter 20 value 94.007331 iter 30 value 93.745575 iter 40 value 92.682071 iter 50 value 91.779732 iter 60 value 91.645192 iter 70 value 86.759917 iter 80 value 85.955110 iter 90 value 85.914251 final value 85.914024 converged Fitting Repeat 3 # weights: 305 initial value 93.884179 iter 10 value 91.403402 iter 20 value 91.361321 iter 30 value 91.221724 iter 40 value 91.220889 iter 50 value 91.200833 iter 60 value 91.198720 iter 70 value 91.195058 iter 80 value 91.180538 iter 90 value 87.912782 iter 100 value 87.786937 final value 87.786937 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.120560 iter 10 value 88.322286 iter 20 value 88.091837 iter 30 value 87.877966 iter 40 value 87.873990 iter 50 value 87.383783 iter 60 value 87.380546 iter 70 value 85.999971 iter 80 value 85.291761 iter 90 value 83.457539 iter 100 value 82.070057 final value 82.070057 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.377833 iter 10 value 94.026356 iter 20 value 94.013474 iter 30 value 94.010247 iter 40 value 89.401542 iter 50 value 84.760663 iter 60 value 83.004840 iter 70 value 82.944265 iter 80 value 82.717064 iter 90 value 82.129719 iter 100 value 81.968974 final value 81.968974 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 119.197522 iter 10 value 93.155070 iter 20 value 85.972775 iter 30 value 84.669211 iter 40 value 84.665456 iter 50 value 84.069095 iter 60 value 82.435589 iter 70 value 82.317805 iter 80 value 82.108385 iter 90 value 82.102874 final value 82.102857 converged Fitting Repeat 2 # weights: 507 initial value 100.525330 iter 10 value 94.061532 iter 20 value 94.011487 iter 30 value 94.009000 final value 94.008995 converged Fitting Repeat 3 # weights: 507 initial value 100.298021 iter 10 value 91.829998 iter 20 value 91.403806 iter 30 value 91.401673 iter 40 value 87.804527 iter 50 value 86.811664 iter 60 value 86.306488 iter 70 value 86.191112 final value 86.190763 converged Fitting Repeat 4 # weights: 507 initial value 117.077965 iter 10 value 95.053812 iter 20 value 94.019040 iter 30 value 94.012553 iter 40 value 94.011188 iter 50 value 93.826736 iter 60 value 91.130939 iter 70 value 91.118693 iter 80 value 90.249456 iter 90 value 90.230292 iter 100 value 90.229553 final value 90.229553 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.686769 iter 10 value 92.873179 iter 20 value 92.867172 iter 30 value 92.812760 iter 40 value 92.811381 final value 92.811349 converged Fitting Repeat 1 # weights: 103 initial value 96.319441 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.290584 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.681044 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.232758 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 105.394179 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.881088 iter 10 value 87.468415 iter 20 value 86.603767 iter 30 value 85.019359 final value 85.002841 converged Fitting Repeat 2 # weights: 305 initial value 106.374884 iter 10 value 94.111062 iter 20 value 94.105281 final value 94.105264 converged Fitting Repeat 3 # weights: 305 initial value 105.365498 iter 10 value 94.424077 iter 10 value 94.424077 iter 10 value 94.424077 final value 94.424077 converged Fitting Repeat 4 # weights: 305 initial value 103.394713 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 102.646379 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 101.225495 iter 10 value 94.484218 final value 94.484216 converged Fitting Repeat 2 # weights: 507 initial value 105.370129 iter 10 value 93.104232 iter 20 value 85.554614 iter 30 value 85.284843 iter 40 value 85.215898 iter 50 value 85.199679 iter 60 value 85.199529 final value 85.199519 converged Fitting Repeat 3 # weights: 507 initial value 105.224295 final value 94.427727 converged Fitting Repeat 4 # weights: 507 initial value 107.730997 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 99.250458 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 105.866928 iter 10 value 94.548057 iter 20 value 94.489873 iter 30 value 94.488668 iter 40 value 94.487877 iter 50 value 94.486567 iter 60 value 94.459368 iter 70 value 89.104759 iter 80 value 87.873612 iter 90 value 85.086819 iter 100 value 81.525330 final value 81.525330 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.940199 iter 10 value 94.472260 iter 20 value 86.335258 iter 30 value 82.983868 iter 40 value 82.181327 iter 50 value 81.465914 iter 60 value 81.135670 iter 70 value 80.998873 iter 80 value 80.912555 iter 90 value 80.698713 iter 100 value 80.469635 final value 80.469635 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.823774 iter 10 value 94.177484 iter 20 value 83.684993 iter 30 value 82.090223 iter 40 value 81.752065 iter 50 value 81.487013 iter 60 value 80.732527 iter 70 value 80.514689 iter 80 value 80.359381 iter 90 value 80.277112 final value 80.271075 converged Fitting Repeat 4 # weights: 103 initial value 106.383871 iter 10 value 94.466050 iter 20 value 88.710949 iter 30 value 84.921737 iter 40 value 84.293622 iter 50 value 83.652099 iter 60 value 83.532879 iter 70 value 82.268957 iter 80 value 81.649848 iter 90 value 81.233840 iter 100 value 80.548898 final value 80.548898 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.941672 iter 10 value 94.499166 iter 20 value 90.883579 iter 30 value 89.103602 iter 40 value 88.936814 iter 50 value 87.742439 iter 60 value 87.632625 iter 70 value 85.702268 iter 80 value 84.670368 iter 90 value 84.160395 iter 100 value 84.148018 final value 84.148018 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 127.183010 iter 10 value 94.071649 iter 20 value 89.580582 iter 30 value 88.490522 iter 40 value 87.595417 iter 50 value 84.883804 iter 60 value 82.182296 iter 70 value 81.333553 iter 80 value 81.025036 iter 90 value 80.552146 iter 100 value 80.490268 final value 80.490268 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 131.743824 iter 10 value 94.508218 iter 20 value 86.310490 iter 30 value 84.230941 iter 40 value 81.770035 iter 50 value 81.376824 iter 60 value 80.948567 iter 70 value 80.855446 iter 80 value 80.517953 iter 90 value 80.301121 iter 100 value 80.239131 final value 80.239131 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.980969 iter 10 value 94.538500 iter 20 value 88.014599 iter 30 value 84.435330 iter 40 value 82.069841 iter 50 value 81.692090 iter 60 value 81.175731 iter 70 value 80.876246 iter 80 value 80.421209 iter 90 value 79.942846 iter 100 value 79.122176 final value 79.122176 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.242851 iter 10 value 93.793430 iter 20 value 84.149037 iter 30 value 82.290688 iter 40 value 81.707078 iter 50 value 80.884102 iter 60 value 80.339094 iter 70 value 80.320611 iter 80 value 80.288918 iter 90 value 79.991145 iter 100 value 79.637636 final value 79.637636 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.612317 iter 10 value 90.823153 iter 20 value 87.375693 iter 30 value 86.873583 iter 40 value 86.353671 iter 50 value 84.770427 iter 60 value 83.010520 iter 70 value 81.179634 iter 80 value 79.756730 iter 90 value 79.523686 iter 100 value 79.292152 final value 79.292152 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 114.117662 iter 10 value 94.492803 iter 20 value 86.996626 iter 30 value 83.508781 iter 40 value 81.109878 iter 50 value 80.195617 iter 60 value 79.708953 iter 70 value 79.528163 iter 80 value 78.831569 iter 90 value 78.583439 iter 100 value 78.457722 final value 78.457722 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.571706 iter 10 value 95.158664 iter 20 value 87.655364 iter 30 value 84.329883 iter 40 value 82.796572 iter 50 value 81.340296 iter 60 value 80.603886 iter 70 value 80.583777 iter 80 value 80.337288 iter 90 value 79.567364 iter 100 value 79.081405 final value 79.081405 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 122.100697 iter 10 value 94.521999 iter 20 value 94.460331 iter 30 value 88.324020 iter 40 value 83.434210 iter 50 value 82.826273 iter 60 value 82.480080 iter 70 value 81.001965 iter 80 value 80.636685 iter 90 value 80.069785 iter 100 value 79.407834 final value 79.407834 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.206593 iter 10 value 94.666274 iter 20 value 93.094493 iter 30 value 88.019929 iter 40 value 87.630290 iter 50 value 85.444131 iter 60 value 84.502326 iter 70 value 84.074745 iter 80 value 83.825573 iter 90 value 83.660361 iter 100 value 82.041045 final value 82.041045 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.562871 iter 10 value 94.898762 iter 20 value 94.465278 iter 30 value 90.845301 iter 40 value 89.347624 iter 50 value 83.782400 iter 60 value 82.529796 iter 70 value 81.774749 iter 80 value 80.689464 iter 90 value 79.560913 iter 100 value 78.947398 final value 78.947398 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 107.064043 final value 94.485745 converged Fitting Repeat 2 # weights: 103 initial value 102.469716 final value 94.485746 converged Fitting Repeat 3 # weights: 103 initial value 102.729584 final value 94.485778 converged Fitting Repeat 4 # weights: 103 initial value 102.277872 final value 94.485738 converged Fitting Repeat 5 # weights: 103 initial value 100.613846 final value 94.486028 converged Fitting Repeat 1 # weights: 305 initial value 96.521135 iter 10 value 94.471533 iter 20 value 94.467407 final value 94.466992 converged Fitting Repeat 2 # weights: 305 initial value 107.803600 iter 10 value 94.471512 iter 20 value 94.372007 iter 30 value 93.566004 iter 40 value 93.515407 iter 50 value 91.978041 iter 60 value 88.739410 iter 70 value 88.564779 iter 80 value 86.728041 iter 90 value 83.589417 iter 100 value 81.833344 final value 81.833344 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.722554 iter 10 value 93.542116 iter 20 value 91.203372 iter 30 value 91.065019 iter 40 value 91.059861 iter 50 value 91.058170 iter 60 value 91.045982 iter 70 value 91.045792 iter 80 value 91.045147 iter 90 value 91.044958 iter 100 value 91.044593 final value 91.044593 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.105921 iter 10 value 94.489068 iter 20 value 94.399081 iter 30 value 85.308706 iter 40 value 84.227299 iter 50 value 84.225198 iter 60 value 84.198980 iter 70 value 84.075876 iter 80 value 84.073679 iter 90 value 83.905606 iter 100 value 83.904864 final value 83.904864 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.011945 iter 10 value 94.488912 iter 20 value 94.484306 iter 30 value 94.373086 iter 40 value 90.026128 iter 50 value 88.687274 iter 60 value 88.612007 iter 70 value 83.691703 iter 80 value 82.186707 iter 90 value 81.947038 iter 100 value 81.279243 final value 81.279243 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 100.392768 iter 10 value 94.474560 iter 20 value 93.974965 iter 30 value 93.607842 iter 40 value 85.406577 iter 50 value 83.184587 iter 60 value 82.967540 iter 70 value 80.448665 iter 80 value 80.346041 iter 90 value 80.322737 iter 100 value 79.401822 final value 79.401822 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 125.308856 iter 10 value 94.481325 iter 20 value 94.453689 iter 30 value 94.376431 iter 40 value 92.698687 iter 50 value 92.559613 iter 60 value 92.475595 iter 70 value 92.470830 iter 80 value 92.215032 iter 90 value 92.081642 iter 100 value 92.077056 final value 92.077056 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.768874 iter 10 value 91.958046 iter 20 value 87.859815 iter 30 value 87.827954 iter 40 value 87.823010 iter 50 value 87.819963 iter 60 value 86.496234 iter 70 value 84.805514 iter 80 value 84.123812 iter 90 value 78.138586 iter 100 value 77.839583 final value 77.839583 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.430641 iter 10 value 94.436568 iter 20 value 94.238104 iter 30 value 84.918176 iter 40 value 79.396798 iter 50 value 78.709577 iter 60 value 78.696446 iter 70 value 78.691051 iter 80 value 78.688156 iter 90 value 78.684621 iter 100 value 78.679825 final value 78.679825 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.976705 iter 10 value 94.474928 iter 20 value 94.467688 iter 30 value 90.998009 iter 40 value 90.974110 iter 50 value 84.405718 iter 60 value 83.251811 iter 70 value 83.247717 iter 80 value 83.243201 iter 90 value 82.889154 iter 100 value 81.153925 final value 81.153925 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.711129 final value 94.443243 converged Fitting Repeat 2 # weights: 103 initial value 102.066589 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 107.044660 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.318411 final value 94.443243 converged Fitting Repeat 5 # weights: 103 initial value 105.378723 final value 94.466823 converged Fitting Repeat 1 # weights: 305 initial value 117.861192 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.935809 iter 10 value 94.409648 final value 94.409639 converged Fitting Repeat 3 # weights: 305 initial value 112.800173 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.915938 final value 94.443243 converged Fitting Repeat 5 # weights: 305 initial value 101.753756 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.544085 iter 10 value 94.448923 final value 94.443243 converged Fitting Repeat 2 # weights: 507 initial value 98.228758 iter 10 value 94.383623 iter 10 value 94.383623 iter 10 value 94.383623 final value 94.383623 converged Fitting Repeat 3 # weights: 507 initial value 125.226228 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 101.149548 iter 10 value 94.354513 iter 20 value 94.315162 final value 94.315116 converged Fitting Repeat 5 # weights: 507 initial value 102.968829 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.354453 iter 10 value 94.415059 iter 20 value 87.345974 iter 30 value 85.550658 iter 40 value 83.530477 iter 50 value 82.104243 iter 60 value 81.841562 iter 70 value 81.728495 final value 81.728459 converged Fitting Repeat 2 # weights: 103 initial value 105.918067 iter 10 value 94.482597 iter 20 value 93.499021 iter 30 value 92.182175 iter 40 value 91.657952 iter 50 value 91.526393 final value 91.526112 converged Fitting Repeat 3 # weights: 103 initial value 96.339500 iter 10 value 94.509798 iter 20 value 94.425279 iter 30 value 93.326367 iter 40 value 89.378717 iter 50 value 86.127938 iter 60 value 85.594857 iter 70 value 85.505083 final value 85.504814 converged Fitting Repeat 4 # weights: 103 initial value 104.463787 iter 10 value 92.551874 iter 20 value 86.836982 iter 30 value 85.843150 iter 40 value 85.377458 final value 85.375208 converged Fitting Repeat 5 # weights: 103 initial value 98.581089 iter 10 value 94.434354 iter 20 value 94.020384 iter 30 value 93.835775 iter 40 value 92.315492 iter 50 value 89.673804 iter 60 value 86.021054 iter 70 value 84.790776 iter 80 value 84.080833 iter 90 value 82.631184 iter 100 value 82.473653 final value 82.473653 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 109.973933 iter 10 value 94.140488 iter 20 value 88.743714 iter 30 value 87.720117 iter 40 value 86.497061 iter 50 value 86.255954 iter 60 value 85.709686 iter 70 value 85.345679 iter 80 value 84.454899 iter 90 value 81.223888 iter 100 value 80.628291 final value 80.628291 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 126.824592 iter 10 value 94.437364 iter 20 value 93.070109 iter 30 value 91.082974 iter 40 value 90.323596 iter 50 value 89.836554 iter 60 value 85.394556 iter 70 value 81.729829 iter 80 value 80.293662 iter 90 value 79.902704 iter 100 value 79.656942 final value 79.656942 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.841807 iter 10 value 94.394305 iter 20 value 89.791516 iter 30 value 87.906467 iter 40 value 87.650409 iter 50 value 83.323963 iter 60 value 82.723761 iter 70 value 82.578280 iter 80 value 82.517041 iter 90 value 82.453284 iter 100 value 81.614061 final value 81.614061 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.106296 iter 10 value 94.121380 iter 20 value 89.298257 iter 30 value 88.203480 iter 40 value 86.032861 iter 50 value 84.382721 iter 60 value 82.552288 iter 70 value 81.047596 iter 80 value 80.065577 iter 90 value 79.937469 iter 100 value 79.687973 final value 79.687973 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.707793 iter 10 value 94.105394 iter 20 value 92.819762 iter 30 value 84.604580 iter 40 value 84.041584 iter 50 value 82.778508 iter 60 value 82.591826 iter 70 value 82.426625 iter 80 value 81.603440 iter 90 value 81.468970 iter 100 value 81.449569 final value 81.449569 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.188765 iter 10 value 94.511217 iter 20 value 92.200956 iter 30 value 85.232796 iter 40 value 83.954208 iter 50 value 82.437466 iter 60 value 81.752458 iter 70 value 80.546952 iter 80 value 80.167225 iter 90 value 80.034952 iter 100 value 79.937343 final value 79.937343 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.904018 iter 10 value 87.136395 iter 20 value 85.052059 iter 30 value 82.842252 iter 40 value 82.141235 iter 50 value 81.799920 iter 60 value 81.652129 iter 70 value 81.459727 iter 80 value 81.348904 iter 90 value 81.048274 iter 100 value 80.248233 final value 80.248233 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.541704 iter 10 value 94.659863 iter 20 value 93.740657 iter 30 value 90.271737 iter 40 value 89.156863 iter 50 value 86.572708 iter 60 value 85.664350 iter 70 value 81.990599 iter 80 value 81.172361 iter 90 value 80.936660 iter 100 value 80.096451 final value 80.096451 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 128.549539 iter 10 value 94.959431 iter 20 value 89.981880 iter 30 value 87.275273 iter 40 value 86.686728 iter 50 value 85.577974 iter 60 value 85.454529 iter 70 value 85.039866 iter 80 value 81.953214 iter 90 value 80.459628 iter 100 value 80.322808 final value 80.322808 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.068852 iter 10 value 90.446647 iter 20 value 88.920716 iter 30 value 87.870147 iter 40 value 86.951552 iter 50 value 81.339936 iter 60 value 80.515664 iter 70 value 80.074641 iter 80 value 79.826086 iter 90 value 79.650651 iter 100 value 79.628893 final value 79.628893 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.271380 final value 94.485720 converged Fitting Repeat 2 # weights: 103 initial value 108.666417 final value 94.485896 converged Fitting Repeat 3 # weights: 103 initial value 98.178109 iter 10 value 94.485628 final value 94.484219 converged Fitting Repeat 4 # weights: 103 initial value 101.699810 iter 10 value 94.444808 iter 20 value 94.350637 iter 30 value 93.467671 iter 40 value 92.914653 iter 50 value 92.912568 iter 60 value 92.911840 final value 92.911804 converged Fitting Repeat 5 # weights: 103 initial value 94.863309 iter 10 value 94.438664 iter 20 value 92.806279 iter 30 value 88.075634 iter 40 value 88.000141 iter 50 value 87.999874 final value 87.999821 converged Fitting Repeat 1 # weights: 305 initial value 96.254727 iter 10 value 94.489406 iter 20 value 94.402382 iter 30 value 91.761563 iter 40 value 90.258603 iter 50 value 90.153059 iter 60 value 90.152923 iter 70 value 90.152651 final value 90.152243 converged Fitting Repeat 2 # weights: 305 initial value 98.270189 iter 10 value 94.487560 iter 20 value 92.721032 iter 30 value 86.629578 final value 86.624764 converged Fitting Repeat 3 # weights: 305 initial value 114.444369 iter 10 value 94.325149 iter 20 value 93.728136 iter 30 value 93.716547 iter 40 value 93.711737 iter 50 value 93.704225 final value 93.704121 converged Fitting Repeat 4 # weights: 305 initial value 106.635128 iter 10 value 94.489095 iter 20 value 87.972938 iter 30 value 86.625537 iter 40 value 86.621689 iter 50 value 86.621441 iter 60 value 86.620999 iter 70 value 86.286554 iter 80 value 86.286482 iter 90 value 86.286114 iter 100 value 86.283623 final value 86.283623 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.019957 iter 10 value 94.448712 iter 20 value 89.793907 iter 30 value 86.629365 iter 40 value 86.626329 iter 50 value 86.622266 iter 60 value 83.358393 iter 70 value 82.996374 iter 80 value 82.994340 iter 90 value 82.993797 iter 100 value 82.992973 final value 82.992973 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.786384 iter 10 value 94.451177 iter 20 value 94.355318 iter 30 value 93.678065 iter 40 value 92.627445 iter 50 value 88.766408 iter 60 value 86.754705 iter 70 value 86.748501 final value 86.748483 converged Fitting Repeat 2 # weights: 507 initial value 114.130181 iter 10 value 92.579482 iter 20 value 87.635726 iter 30 value 87.145766 iter 40 value 87.137175 iter 50 value 86.999020 iter 60 value 86.781540 iter 70 value 86.773292 iter 80 value 86.769156 iter 90 value 86.767850 iter 100 value 84.996531 final value 84.996531 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.137015 iter 10 value 94.451135 iter 20 value 94.405111 iter 30 value 94.400494 iter 40 value 94.400396 iter 50 value 94.382947 iter 60 value 86.261054 iter 70 value 85.397969 iter 80 value 85.397851 iter 90 value 85.028056 iter 100 value 83.277025 final value 83.277025 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 100.726046 iter 10 value 94.393622 iter 20 value 94.367362 iter 30 value 94.366969 iter 40 value 94.366801 iter 50 value 94.362052 final value 94.361641 converged Fitting Repeat 5 # weights: 507 initial value 97.378772 iter 10 value 94.437306 iter 20 value 94.430540 iter 20 value 94.430540 iter 20 value 94.430540 final value 94.430540 converged Fitting Repeat 1 # weights: 103 initial value 103.702601 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 110.354466 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.098428 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.454333 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.560583 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.167382 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.295133 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 97.507177 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 98.237502 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 128.609139 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 101.559242 iter 10 value 94.025344 iter 20 value 93.893414 iter 30 value 85.493070 iter 40 value 82.687075 iter 50 value 82.597195 iter 60 value 82.386526 iter 60 value 82.386526 iter 60 value 82.386526 final value 82.386526 converged Fitting Repeat 2 # weights: 507 initial value 99.167424 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 123.688768 iter 10 value 93.975298 final value 93.974641 converged Fitting Repeat 4 # weights: 507 initial value 108.131329 iter 10 value 93.834017 iter 20 value 93.764385 final value 93.764219 converged Fitting Repeat 5 # weights: 507 initial value 121.607341 final value 94.026542 converged Fitting Repeat 1 # weights: 103 initial value 109.149668 iter 10 value 97.173524 iter 20 value 94.469289 iter 30 value 91.945628 iter 40 value 90.565675 iter 50 value 90.251349 iter 60 value 90.228680 final value 90.227846 converged Fitting Repeat 2 # weights: 103 initial value 100.064629 iter 10 value 94.528952 iter 20 value 94.488302 iter 30 value 94.205004 iter 40 value 93.788034 iter 50 value 93.006040 iter 60 value 85.780746 iter 70 value 85.224898 iter 80 value 85.008407 iter 90 value 83.297990 iter 100 value 82.114974 final value 82.114974 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.916351 iter 10 value 94.409091 iter 20 value 86.230290 iter 30 value 82.105741 iter 40 value 82.074142 iter 50 value 82.045985 iter 60 value 81.987597 iter 70 value 81.894165 iter 80 value 81.884163 iter 90 value 81.883817 final value 81.882832 converged Fitting Repeat 4 # weights: 103 initial value 101.289571 iter 10 value 94.482894 iter 20 value 90.294642 iter 30 value 87.369221 iter 40 value 84.666202 iter 50 value 81.929526 iter 60 value 81.893131 final value 81.882832 converged Fitting Repeat 5 # weights: 103 initial value 101.314200 iter 10 value 94.154708 iter 20 value 90.990767 iter 30 value 89.495858 iter 40 value 88.730359 iter 50 value 86.070089 iter 60 value 80.743885 iter 70 value 79.872405 iter 80 value 79.764842 iter 90 value 79.619139 iter 100 value 79.421348 final value 79.421348 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 141.592952 iter 10 value 94.500643 iter 20 value 94.178798 iter 30 value 93.754523 iter 40 value 91.902200 iter 50 value 85.277168 iter 60 value 83.277966 iter 70 value 81.341244 iter 80 value 81.052864 iter 90 value 80.352933 iter 100 value 79.944762 final value 79.944762 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 121.257110 iter 10 value 94.575112 iter 20 value 91.629207 iter 30 value 85.659578 iter 40 value 83.792246 iter 50 value 82.532075 iter 60 value 80.953222 iter 70 value 80.383676 iter 80 value 79.451531 iter 90 value 78.667451 iter 100 value 78.497693 final value 78.497693 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.813611 iter 10 value 94.552812 iter 20 value 94.507697 iter 30 value 94.328991 iter 40 value 91.806324 iter 50 value 87.638130 iter 60 value 84.100824 iter 70 value 81.814619 iter 80 value 81.219303 iter 90 value 80.657547 iter 100 value 80.391781 final value 80.391781 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.287063 iter 10 value 87.892968 iter 20 value 84.823733 iter 30 value 84.497800 iter 40 value 81.374652 iter 50 value 79.809597 iter 60 value 79.666075 iter 70 value 79.525724 iter 80 value 79.006886 iter 90 value 78.787623 iter 100 value 78.729944 final value 78.729944 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.065206 iter 10 value 94.274579 iter 20 value 93.201025 iter 30 value 84.971957 iter 40 value 81.658955 iter 50 value 79.979292 iter 60 value 79.434668 iter 70 value 78.829108 iter 80 value 78.650381 iter 90 value 78.632516 iter 100 value 78.594298 final value 78.594298 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.435002 iter 10 value 94.506909 iter 20 value 94.445662 iter 30 value 86.654870 iter 40 value 82.432406 iter 50 value 81.931176 iter 60 value 81.690664 iter 70 value 81.531425 iter 80 value 81.078101 iter 90 value 79.333807 iter 100 value 79.065439 final value 79.065439 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 141.916825 iter 10 value 95.510137 iter 20 value 93.828166 iter 30 value 91.208576 iter 40 value 84.648027 iter 50 value 83.281984 iter 60 value 80.245103 iter 70 value 78.763517 iter 80 value 78.647694 iter 90 value 78.257466 iter 100 value 78.166778 final value 78.166778 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.982267 iter 10 value 94.563926 iter 20 value 89.528473 iter 30 value 85.062893 iter 40 value 84.719504 iter 50 value 82.667955 iter 60 value 82.050576 iter 70 value 81.502449 iter 80 value 80.193590 iter 90 value 80.073991 iter 100 value 80.021449 final value 80.021449 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.819622 iter 10 value 94.369531 iter 20 value 87.909019 iter 30 value 86.086991 iter 40 value 85.187821 iter 50 value 81.788452 iter 60 value 81.132959 iter 70 value 79.555956 iter 80 value 79.127780 iter 90 value 78.860383 iter 100 value 78.545976 final value 78.545976 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 127.192373 iter 10 value 94.179462 iter 20 value 92.416950 iter 30 value 84.802364 iter 40 value 82.340052 iter 50 value 80.612026 iter 60 value 80.009878 iter 70 value 79.477932 iter 80 value 78.858838 iter 90 value 78.647728 iter 100 value 78.565352 final value 78.565352 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.824870 final value 94.485718 converged Fitting Repeat 2 # weights: 103 initial value 99.802662 iter 10 value 94.166822 iter 20 value 94.166473 iter 30 value 93.872074 final value 93.872042 converged Fitting Repeat 3 # weights: 103 initial value 100.732291 final value 94.486030 converged Fitting Repeat 4 # weights: 103 initial value 97.345301 final value 94.485805 converged Fitting Repeat 5 # weights: 103 initial value 97.758369 final value 94.485716 converged Fitting Repeat 1 # weights: 305 initial value 101.952736 iter 10 value 94.489421 iter 20 value 94.480745 iter 30 value 93.637858 iter 40 value 89.462085 iter 50 value 81.067242 iter 60 value 81.029042 iter 70 value 81.016550 iter 80 value 80.662208 iter 90 value 80.395876 iter 100 value 80.262361 final value 80.262361 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.942908 iter 10 value 94.489032 iter 20 value 94.478922 iter 30 value 93.573641 final value 93.573429 converged Fitting Repeat 3 # weights: 305 initial value 99.879830 iter 10 value 94.031453 iter 20 value 94.022365 iter 30 value 93.519231 iter 40 value 92.456392 iter 50 value 85.172235 iter 60 value 84.961594 iter 70 value 84.960303 final value 84.959148 converged Fitting Repeat 4 # weights: 305 initial value 94.651667 iter 10 value 94.488853 iter 20 value 92.034570 iter 30 value 83.784138 iter 40 value 83.354296 final value 83.353696 converged Fitting Repeat 5 # weights: 305 initial value 100.343186 iter 10 value 94.489214 iter 20 value 93.416304 iter 30 value 92.617040 iter 40 value 92.615426 final value 92.615342 converged Fitting Repeat 1 # weights: 507 initial value 101.887431 iter 10 value 94.037249 iter 20 value 93.782949 iter 30 value 93.575666 iter 40 value 93.206014 iter 50 value 87.593182 iter 60 value 83.648389 iter 70 value 83.239345 iter 80 value 83.233881 iter 90 value 83.091977 iter 100 value 82.845130 final value 82.845130 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.158492 iter 10 value 88.848906 iter 20 value 85.961963 iter 30 value 85.959652 iter 40 value 83.787195 iter 50 value 83.785802 iter 60 value 83.370821 iter 70 value 80.801863 iter 80 value 80.704130 iter 90 value 80.703706 iter 100 value 80.703178 final value 80.703178 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 133.079460 iter 10 value 94.034437 iter 20 value 94.028646 iter 30 value 94.027402 final value 94.027366 converged Fitting Repeat 4 # weights: 507 initial value 120.679574 iter 10 value 94.468450 iter 20 value 91.402279 iter 30 value 81.208617 iter 40 value 81.171556 iter 50 value 81.162806 iter 60 value 81.011772 iter 70 value 81.010103 iter 80 value 81.007881 iter 90 value 80.745137 iter 100 value 80.694068 final value 80.694068 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.546352 iter 10 value 94.491995 iter 20 value 87.448395 iter 30 value 85.963496 iter 40 value 85.960663 iter 50 value 85.957678 iter 60 value 84.543239 iter 70 value 83.784677 iter 80 value 83.481160 iter 90 value 83.472801 iter 100 value 83.471639 final value 83.471639 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 120.587297 iter 10 value 117.767012 iter 20 value 117.758793 iter 30 value 116.120691 iter 40 value 111.755156 iter 50 value 105.711496 iter 60 value 103.044381 iter 70 value 102.448065 iter 80 value 101.611247 iter 90 value 101.147430 iter 100 value 101.028381 final value 101.028381 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.326240 iter 10 value 117.281432 iter 20 value 117.215552 iter 30 value 117.212087 iter 40 value 117.208414 iter 50 value 107.508027 iter 60 value 104.656708 iter 70 value 104.417749 iter 80 value 104.417242 iter 90 value 104.415214 iter 100 value 103.756784 final value 103.756784 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 125.123969 iter 10 value 117.767096 iter 20 value 117.554580 iter 30 value 117.364654 iter 40 value 112.107522 iter 50 value 111.896619 final value 111.896421 converged Fitting Repeat 4 # weights: 507 initial value 119.286087 iter 10 value 117.615523 iter 20 value 117.519111 iter 30 value 117.371942 iter 40 value 105.364863 iter 50 value 105.359729 iter 60 value 104.952699 iter 70 value 103.924063 iter 80 value 102.844248 iter 90 value 102.603496 iter 100 value 102.562342 final value 102.562342 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 142.139455 iter 10 value 116.395235 iter 20 value 115.918962 iter 30 value 115.903859 iter 40 value 115.441614 iter 50 value 115.281055 iter 60 value 115.223846 iter 70 value 115.223354 final value 115.223285 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Mar 14 02:12:35 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 44.95 1.37 108.98
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 35.39 | 2.00 | 37.59 | |
FreqInteractors | 0.25 | 0.03 | 0.30 | |
calculateAAC | 0.03 | 0.02 | 0.04 | |
calculateAutocor | 0.51 | 0.08 | 0.60 | |
calculateCTDC | 0.08 | 0.00 | 0.08 | |
calculateCTDD | 0.81 | 0.06 | 0.87 | |
calculateCTDT | 0.32 | 0.00 | 0.31 | |
calculateCTriad | 0.42 | 0.06 | 0.49 | |
calculateDC | 0.15 | 0.00 | 0.45 | |
calculateF | 0.41 | 0.05 | 0.45 | |
calculateKSAAP | 0.11 | 0.00 | 0.11 | |
calculateQD_Sm | 2.37 | 0.20 | 2.58 | |
calculateTC | 1.74 | 0.14 | 1.88 | |
calculateTC_Sm | 0.31 | 0.05 | 0.36 | |
corr_plot | 34.25 | 1.87 | 36.12 | |
enrichfindP | 0.67 | 0.08 | 14.31 | |
enrichfind_hp | 0.10 | 0.02 | 1.14 | |
enrichplot | 0.39 | 0.00 | 0.40 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.01 | 0.01 | 2.56 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0.02 | 0.00 | 0.00 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.09 | 0.00 | 0.10 | |
pred_ensembel | 13.83 | 0.46 | 12.88 | |
var_imp | 35.12 | 1.33 | 36.45 | |