Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-02-06 12:08 -0500 (Thu, 06 Feb 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4753 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4501 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4524 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4476 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4407 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-02-04 05:02:44 -0500 (Tue, 04 Feb 2025) |
EndedAt: 2025-02-04 05:11:28 -0500 (Tue, 04 Feb 2025) |
EllapsedTime: 523.3 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 52.400 2.093 59.069 FSmethod 50.879 1.865 53.510 corr_plot 50.509 1.869 53.148 pred_ensembel 25.024 0.433 22.682 calculateTC 4.652 0.465 5.354 enrichfindP 0.894 0.081 14.276 getFASTA 0.121 0.016 7.552 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 104.683971 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 105.817959 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.685960 iter 10 value 88.692145 iter 20 value 87.033745 iter 30 value 86.045389 iter 40 value 85.530843 iter 50 value 84.844845 final value 84.840914 converged Fitting Repeat 4 # weights: 103 initial value 97.021881 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.989908 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 112.169356 iter 10 value 92.436367 iter 20 value 92.405237 final value 92.405177 converged Fitting Repeat 2 # weights: 305 initial value 104.434271 final value 94.052928 converged Fitting Repeat 3 # weights: 305 initial value 99.214778 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 95.106752 final value 94.032967 converged Fitting Repeat 5 # weights: 305 initial value 107.442772 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 95.068896 iter 10 value 93.968390 final value 93.968388 converged Fitting Repeat 2 # weights: 507 initial value 110.098468 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 98.713393 iter 10 value 94.041077 iter 20 value 94.032264 final value 94.032190 converged Fitting Repeat 4 # weights: 507 initial value 108.476112 iter 10 value 93.886126 final value 93.884577 converged Fitting Repeat 5 # weights: 507 initial value 97.700090 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 102.386077 iter 10 value 94.026866 iter 20 value 93.569764 iter 30 value 89.190882 iter 40 value 88.297635 iter 50 value 86.936104 iter 60 value 85.681542 iter 70 value 85.593556 iter 80 value 84.908095 iter 90 value 84.739946 final value 84.738305 converged Fitting Repeat 2 # weights: 103 initial value 96.597406 iter 10 value 94.067094 iter 20 value 94.053142 iter 30 value 93.819939 iter 40 value 92.650018 iter 50 value 92.026027 iter 60 value 91.971235 iter 70 value 91.940319 iter 80 value 86.323286 iter 90 value 85.019300 iter 100 value 84.362840 final value 84.362840 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.459806 iter 10 value 94.067414 iter 20 value 93.841338 iter 30 value 89.438740 iter 40 value 86.065497 iter 50 value 85.923024 iter 60 value 85.366512 iter 70 value 85.135928 iter 80 value 85.121468 iter 90 value 85.007178 final value 85.006300 converged Fitting Repeat 4 # weights: 103 initial value 97.854212 iter 10 value 94.061895 iter 20 value 90.446827 iter 30 value 87.784313 iter 40 value 87.427455 iter 50 value 87.271997 iter 60 value 86.923587 iter 70 value 86.729728 iter 80 value 86.660855 iter 90 value 84.603943 final value 84.592550 converged Fitting Repeat 5 # weights: 103 initial value 97.970804 iter 10 value 94.031373 iter 20 value 92.595391 iter 30 value 92.150907 iter 40 value 91.961231 final value 91.960295 converged Fitting Repeat 1 # weights: 305 initial value 106.640246 iter 10 value 94.071956 iter 20 value 94.012311 iter 30 value 88.496337 iter 40 value 84.307463 iter 50 value 83.634523 iter 60 value 83.237108 iter 70 value 82.908237 iter 80 value 82.465742 iter 90 value 82.186353 iter 100 value 81.608808 final value 81.608808 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.111202 iter 10 value 94.055861 iter 20 value 87.955667 iter 30 value 87.175697 iter 40 value 86.497372 iter 50 value 85.647734 iter 60 value 85.196669 iter 70 value 83.513732 iter 80 value 82.490836 iter 90 value 82.090574 iter 100 value 81.822103 final value 81.822103 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.435288 iter 10 value 93.987789 iter 20 value 87.996037 iter 30 value 86.374181 iter 40 value 85.690061 iter 50 value 84.523132 iter 60 value 84.278386 iter 70 value 84.001826 iter 80 value 83.793828 iter 90 value 82.985805 iter 100 value 82.405323 final value 82.405323 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.435860 iter 10 value 93.334764 iter 20 value 89.272634 iter 30 value 88.222623 iter 40 value 87.970789 iter 50 value 87.861770 iter 60 value 87.716021 iter 70 value 84.588163 iter 80 value 84.020230 iter 90 value 82.779603 iter 100 value 81.878963 final value 81.878963 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.885752 iter 10 value 94.652523 iter 20 value 89.979218 iter 30 value 87.233394 iter 40 value 86.778012 iter 50 value 85.595867 iter 60 value 84.812380 iter 70 value 84.151795 iter 80 value 83.292251 iter 90 value 83.159695 iter 100 value 83.020574 final value 83.020574 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.238220 iter 10 value 93.991930 iter 20 value 89.564917 iter 30 value 87.091622 iter 40 value 86.322967 iter 50 value 86.116229 iter 60 value 84.693158 iter 70 value 83.502707 iter 80 value 83.299218 iter 90 value 83.109562 iter 100 value 82.640485 final value 82.640485 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 130.888885 iter 10 value 94.059140 iter 20 value 89.383853 iter 30 value 87.322349 iter 40 value 85.038318 iter 50 value 84.323698 iter 60 value 84.072629 iter 70 value 83.680163 iter 80 value 83.523819 iter 90 value 83.495700 iter 100 value 83.408576 final value 83.408576 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.579962 iter 10 value 94.332313 iter 20 value 88.106912 iter 30 value 86.846895 iter 40 value 85.189585 iter 50 value 83.642232 iter 60 value 83.072425 iter 70 value 82.083156 iter 80 value 81.455138 iter 90 value 81.229497 iter 100 value 81.106531 final value 81.106531 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.908021 iter 10 value 94.023305 iter 20 value 90.461526 iter 30 value 86.550988 iter 40 value 85.104319 iter 50 value 83.945544 iter 60 value 82.790819 iter 70 value 82.374478 iter 80 value 82.122863 iter 90 value 82.006158 iter 100 value 81.725213 final value 81.725213 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.184885 iter 10 value 94.862594 iter 20 value 88.608778 iter 30 value 86.331089 iter 40 value 85.006334 iter 50 value 84.772171 iter 60 value 83.459128 iter 70 value 83.052388 iter 80 value 82.475368 iter 90 value 82.260974 iter 100 value 81.959001 final value 81.959001 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.139351 iter 10 value 94.054246 final value 94.053415 converged Fitting Repeat 2 # weights: 103 initial value 95.739915 final value 94.054654 converged Fitting Repeat 3 # weights: 103 initial value 104.235599 final value 94.054424 converged Fitting Repeat 4 # weights: 103 initial value 101.279648 final value 94.054583 converged Fitting Repeat 5 # weights: 103 initial value 94.618652 final value 94.054445 converged Fitting Repeat 1 # weights: 305 initial value 94.807299 iter 10 value 94.055366 iter 20 value 94.052923 iter 30 value 93.741285 iter 40 value 87.065362 iter 50 value 86.638910 iter 60 value 82.816914 iter 70 value 81.301267 iter 80 value 81.210953 iter 90 value 81.111266 iter 100 value 81.094257 final value 81.094257 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 105.451276 iter 10 value 94.046819 iter 20 value 94.034057 final value 94.033006 converged Fitting Repeat 3 # weights: 305 initial value 113.347800 iter 10 value 94.057307 iter 20 value 94.052562 iter 30 value 92.813316 iter 40 value 87.908666 iter 50 value 86.166442 iter 60 value 85.672200 final value 85.671402 converged Fitting Repeat 4 # weights: 305 initial value 96.677172 iter 10 value 94.057405 iter 20 value 92.324100 iter 30 value 88.057977 iter 40 value 86.640085 iter 50 value 86.367699 iter 60 value 86.358344 iter 70 value 86.334502 iter 80 value 86.216572 iter 90 value 86.204580 iter 100 value 86.000636 final value 86.000636 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.052250 iter 10 value 94.057992 iter 20 value 94.037953 iter 30 value 86.588198 iter 40 value 85.213282 iter 50 value 85.189530 iter 60 value 85.187792 iter 70 value 83.955568 iter 80 value 83.570253 iter 90 value 82.684820 iter 100 value 82.148562 final value 82.148562 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 94.323341 iter 10 value 92.866990 iter 20 value 92.815577 iter 30 value 92.798861 iter 40 value 92.710286 iter 50 value 92.704588 iter 60 value 92.703390 final value 92.702911 converged Fitting Repeat 2 # weights: 507 initial value 100.971264 iter 10 value 93.972986 iter 20 value 93.930425 iter 30 value 93.924714 iter 40 value 87.284957 iter 50 value 86.397240 iter 60 value 85.428284 iter 70 value 83.009853 iter 80 value 81.375158 iter 90 value 80.355633 iter 100 value 80.258886 final value 80.258886 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.185964 iter 10 value 94.059723 iter 20 value 94.052925 iter 20 value 94.052925 final value 94.052925 converged Fitting Repeat 4 # weights: 507 initial value 122.052590 iter 10 value 94.057911 iter 20 value 94.039465 iter 30 value 94.036597 iter 40 value 93.970544 iter 50 value 92.211245 iter 60 value 92.113233 final value 92.112767 converged Fitting Repeat 5 # weights: 507 initial value 118.110858 iter 10 value 94.041177 iter 20 value 94.031031 iter 30 value 93.603375 iter 40 value 86.911640 iter 50 value 86.402811 iter 60 value 86.395439 iter 70 value 86.395199 iter 80 value 86.297420 iter 90 value 86.293979 iter 100 value 86.293877 final value 86.293877 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 106.579484 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.167609 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 95.471096 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.913856 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 117.960990 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.461499 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 106.205260 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 95.213425 final value 94.443243 converged Fitting Repeat 4 # weights: 305 initial value 95.461385 final value 93.991342 converged Fitting Repeat 5 # weights: 305 initial value 102.105389 iter 10 value 94.402439 iter 10 value 94.402439 iter 10 value 94.402439 final value 94.402439 converged Fitting Repeat 1 # weights: 507 initial value 103.132245 iter 10 value 94.443247 final value 94.443244 converged Fitting Repeat 2 # weights: 507 initial value 105.147484 iter 10 value 93.300000 iter 10 value 93.300000 iter 10 value 93.300000 final value 93.300000 converged Fitting Repeat 3 # weights: 507 initial value 96.475520 final value 94.443243 converged Fitting Repeat 4 # weights: 507 initial value 103.466728 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 102.007123 iter 10 value 94.443278 final value 94.443243 converged Fitting Repeat 1 # weights: 103 initial value 96.650633 iter 10 value 94.133301 iter 20 value 94.022802 iter 30 value 88.453941 iter 40 value 86.080860 iter 50 value 85.621220 iter 60 value 85.447167 iter 70 value 83.370257 iter 80 value 82.952783 iter 90 value 82.843463 iter 100 value 82.814394 final value 82.814394 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.776812 iter 10 value 94.400398 iter 20 value 92.817479 iter 30 value 87.206902 iter 40 value 84.367981 iter 50 value 83.857578 iter 60 value 83.482208 iter 70 value 83.028602 iter 80 value 82.959674 iter 90 value 82.901323 final value 82.896321 converged Fitting Repeat 3 # weights: 103 initial value 99.332226 iter 10 value 94.254062 iter 20 value 89.030440 iter 30 value 86.982106 iter 40 value 86.575059 iter 50 value 85.579368 iter 60 value 83.622682 iter 70 value 83.043100 iter 80 value 82.905846 iter 90 value 82.871346 iter 100 value 82.786465 final value 82.786465 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.559290 iter 10 value 94.428462 iter 20 value 90.056720 iter 30 value 88.079517 iter 40 value 87.386120 iter 50 value 87.161424 iter 60 value 86.258385 iter 70 value 85.912951 iter 80 value 85.411424 iter 90 value 85.319074 final value 85.317618 converged Fitting Repeat 5 # weights: 103 initial value 97.878585 iter 10 value 88.519149 iter 20 value 84.118358 iter 30 value 83.943564 iter 40 value 83.276310 iter 50 value 82.909587 final value 82.896321 converged Fitting Repeat 1 # weights: 305 initial value 98.685815 iter 10 value 94.616607 iter 20 value 94.233532 iter 30 value 93.375208 iter 40 value 84.794917 iter 50 value 84.282748 iter 60 value 83.406593 iter 70 value 82.214058 iter 80 value 81.906130 iter 90 value 81.749875 iter 100 value 81.596747 final value 81.596747 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.118899 iter 10 value 94.542724 iter 20 value 94.301671 iter 30 value 89.142657 iter 40 value 84.124588 iter 50 value 83.632963 iter 60 value 83.022648 iter 70 value 82.148196 iter 80 value 81.518203 iter 90 value 81.239134 iter 100 value 81.160525 final value 81.160525 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.520721 iter 10 value 94.498172 iter 20 value 90.586655 iter 30 value 88.082554 iter 40 value 87.599376 iter 50 value 86.647676 iter 60 value 86.363913 iter 70 value 85.261614 iter 80 value 84.195180 iter 90 value 83.113163 iter 100 value 82.967455 final value 82.967455 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.854160 iter 10 value 94.424623 iter 20 value 86.285752 iter 30 value 86.011447 iter 40 value 85.583272 iter 50 value 85.404078 iter 60 value 85.265621 iter 70 value 85.117334 iter 80 value 85.048756 iter 90 value 84.995822 iter 100 value 83.912621 final value 83.912621 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.307258 iter 10 value 94.490343 iter 20 value 93.638200 iter 30 value 93.054488 iter 40 value 87.989433 iter 50 value 85.535136 iter 60 value 85.324351 iter 70 value 83.644090 iter 80 value 82.701425 iter 90 value 82.293772 iter 100 value 81.954527 final value 81.954527 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.504167 iter 10 value 94.594163 iter 20 value 92.518721 iter 30 value 87.352129 iter 40 value 86.335029 iter 50 value 82.564642 iter 60 value 82.191159 iter 70 value 81.972256 iter 80 value 81.865322 iter 90 value 81.836431 iter 100 value 81.680470 final value 81.680470 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.259207 iter 10 value 94.373691 iter 20 value 93.650415 iter 30 value 92.769558 iter 40 value 86.692442 iter 50 value 85.397134 iter 60 value 83.721908 iter 70 value 82.936358 iter 80 value 81.816901 iter 90 value 81.437546 iter 100 value 81.232052 final value 81.232052 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.810895 iter 10 value 94.161948 iter 20 value 86.747941 iter 30 value 84.531782 iter 40 value 83.687036 iter 50 value 83.352355 iter 60 value 83.074427 iter 70 value 82.962162 iter 80 value 82.951751 iter 90 value 82.640761 iter 100 value 82.025583 final value 82.025583 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.249217 iter 10 value 100.755709 iter 20 value 90.479058 iter 30 value 87.574940 iter 40 value 83.582800 iter 50 value 82.181540 iter 60 value 81.749543 iter 70 value 81.271879 iter 80 value 81.209874 iter 90 value 81.162557 iter 100 value 81.036883 final value 81.036883 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.878261 iter 10 value 94.838077 iter 20 value 87.469859 iter 30 value 85.501590 iter 40 value 85.028450 iter 50 value 84.901425 iter 60 value 84.629721 iter 70 value 83.509725 iter 80 value 83.267087 iter 90 value 82.993959 iter 100 value 82.628816 final value 82.628816 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.366580 final value 94.485860 converged Fitting Repeat 2 # weights: 103 initial value 104.869083 iter 10 value 94.485720 iter 20 value 94.484230 iter 30 value 87.990025 iter 40 value 86.699814 final value 86.699761 converged Fitting Repeat 3 # weights: 103 initial value 94.577535 final value 94.486092 converged Fitting Repeat 4 # weights: 103 initial value 95.713850 final value 94.444993 converged Fitting Repeat 5 # weights: 103 initial value 97.994722 final value 94.485829 converged Fitting Repeat 1 # weights: 305 initial value 104.980865 iter 10 value 94.430457 iter 20 value 94.425224 iter 30 value 89.921404 iter 40 value 89.771319 iter 50 value 88.810599 iter 60 value 88.794855 iter 60 value 88.794854 iter 60 value 88.794854 final value 88.794854 converged Fitting Repeat 2 # weights: 305 initial value 102.345815 iter 10 value 94.488700 iter 20 value 94.484279 iter 30 value 88.365615 iter 40 value 83.249304 iter 50 value 83.225009 final value 83.224988 converged Fitting Repeat 3 # weights: 305 initial value 95.768091 iter 10 value 94.488583 iter 20 value 94.418641 iter 30 value 85.796072 iter 40 value 85.041149 final value 84.997171 converged Fitting Repeat 4 # weights: 305 initial value 104.020381 iter 10 value 92.327795 iter 20 value 91.480735 iter 30 value 89.793646 iter 40 value 89.399068 iter 50 value 89.058570 iter 60 value 88.997444 iter 70 value 88.621104 iter 80 value 88.590033 iter 90 value 88.589155 iter 100 value 88.587841 final value 88.587841 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 98.610963 iter 10 value 94.456474 iter 20 value 94.448183 iter 30 value 94.060627 iter 40 value 93.559671 iter 50 value 91.742697 iter 60 value 90.165063 iter 70 value 90.163127 final value 90.163116 converged Fitting Repeat 1 # weights: 507 initial value 103.879808 iter 10 value 94.492253 iter 20 value 94.207320 iter 30 value 86.720080 iter 40 value 84.480829 iter 50 value 84.451628 iter 60 value 84.446688 iter 70 value 83.974175 iter 80 value 83.872863 iter 90 value 83.516758 iter 100 value 82.045727 final value 82.045727 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 98.417189 iter 10 value 90.219236 iter 20 value 86.847473 iter 30 value 86.288425 iter 40 value 86.194272 iter 50 value 86.182802 iter 60 value 85.825306 iter 70 value 83.226295 iter 80 value 83.043164 iter 90 value 82.128257 iter 100 value 82.019656 final value 82.019656 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.433244 iter 10 value 94.492060 iter 20 value 94.484094 iter 30 value 93.301625 iter 40 value 92.884383 iter 50 value 90.932478 iter 60 value 85.666829 iter 70 value 85.258613 iter 80 value 85.258534 final value 85.258196 converged Fitting Repeat 4 # weights: 507 initial value 103.813268 iter 10 value 94.451421 iter 20 value 94.347481 iter 30 value 93.304527 iter 40 value 86.315167 iter 50 value 86.311848 iter 60 value 86.309401 iter 70 value 86.272673 iter 80 value 85.657368 final value 85.657342 converged Fitting Repeat 5 # weights: 507 initial value 94.974237 iter 10 value 93.308250 iter 20 value 93.274619 iter 30 value 91.898399 iter 40 value 90.844212 iter 50 value 90.814055 iter 60 value 90.812015 final value 90.812003 converged Fitting Repeat 1 # weights: 103 initial value 96.035378 iter 10 value 93.328261 iter 10 value 93.328261 iter 10 value 93.328261 final value 93.328261 converged Fitting Repeat 2 # weights: 103 initial value 102.793287 final value 94.052911 converged Fitting Repeat 3 # weights: 103 initial value 95.879101 iter 10 value 93.328279 final value 93.328261 converged Fitting Repeat 4 # weights: 103 initial value 98.053877 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 99.907778 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 103.617476 iter 10 value 93.328262 final value 93.328261 converged Fitting Repeat 2 # weights: 305 initial value 95.231358 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 109.335038 iter 10 value 88.663390 iter 20 value 85.979499 iter 30 value 81.868471 iter 40 value 81.844214 final value 81.844156 converged Fitting Repeat 4 # weights: 305 initial value 109.922732 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 105.736777 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 97.890007 iter 10 value 86.696730 iter 20 value 86.326959 iter 30 value 86.325704 final value 86.325680 converged Fitting Repeat 2 # weights: 507 initial value 108.452141 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 94.663684 iter 10 value 85.507049 iter 20 value 81.659228 iter 30 value 81.644536 iter 40 value 81.643706 final value 81.643691 converged Fitting Repeat 4 # weights: 507 initial value 95.886494 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 97.515203 iter 10 value 90.174865 iter 20 value 88.673788 final value 88.673670 converged Fitting Repeat 1 # weights: 103 initial value 98.906255 iter 10 value 94.018137 iter 20 value 93.178980 iter 30 value 93.145309 iter 40 value 93.142673 iter 50 value 93.142032 iter 60 value 87.853135 iter 70 value 84.253160 iter 80 value 82.513693 iter 90 value 81.836920 iter 100 value 81.737932 final value 81.737932 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.413207 iter 10 value 94.105188 iter 20 value 92.145859 iter 30 value 86.658443 iter 40 value 83.674141 iter 50 value 82.609240 iter 60 value 81.668424 iter 70 value 80.646508 iter 80 value 79.150379 iter 90 value 78.899213 final value 78.886207 converged Fitting Repeat 3 # weights: 103 initial value 99.428301 iter 10 value 93.947060 iter 20 value 93.545064 iter 30 value 93.018339 iter 40 value 90.486609 iter 50 value 86.835282 iter 60 value 86.560004 iter 70 value 86.425824 iter 80 value 86.327122 iter 90 value 86.213966 iter 100 value 82.892163 final value 82.892163 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.071686 iter 10 value 88.992020 iter 20 value 83.787873 iter 30 value 82.513503 iter 40 value 81.671638 iter 50 value 81.398808 iter 60 value 81.320058 iter 70 value 81.255041 iter 80 value 80.009370 iter 90 value 78.771028 iter 100 value 78.738387 final value 78.738387 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.561744 iter 10 value 94.055028 iter 20 value 93.966984 iter 30 value 93.164707 iter 40 value 93.147206 iter 50 value 93.146457 iter 60 value 93.145295 iter 70 value 93.143226 iter 80 value 84.660828 iter 90 value 83.458320 iter 100 value 81.296234 final value 81.296234 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 107.861672 iter 10 value 93.925201 iter 20 value 91.577161 iter 30 value 91.167016 iter 40 value 90.736177 iter 50 value 90.047624 iter 60 value 89.669840 iter 70 value 88.100518 iter 80 value 79.587398 iter 90 value 78.440148 iter 100 value 78.179797 final value 78.179797 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.211382 iter 10 value 93.997101 iter 20 value 89.206610 iter 30 value 83.789945 iter 40 value 81.943954 iter 50 value 80.031583 iter 60 value 79.724580 iter 70 value 79.707490 iter 80 value 79.676946 iter 90 value 79.646719 iter 100 value 79.451903 final value 79.451903 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.950637 iter 10 value 84.830787 iter 20 value 83.219723 iter 30 value 81.949702 iter 40 value 81.204211 iter 50 value 80.475374 iter 60 value 79.405315 iter 70 value 78.378953 iter 80 value 77.779248 iter 90 value 77.574959 iter 100 value 77.397348 final value 77.397348 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.668904 iter 10 value 94.032300 iter 20 value 90.006619 iter 30 value 82.966380 iter 40 value 82.346584 iter 50 value 81.010518 iter 60 value 79.243858 iter 70 value 78.185780 iter 80 value 77.950311 iter 90 value 77.815374 iter 100 value 77.783926 final value 77.783926 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.233898 iter 10 value 93.641783 iter 20 value 92.754406 iter 30 value 85.665952 iter 40 value 83.515753 iter 50 value 78.976616 iter 60 value 78.257037 iter 70 value 78.091321 iter 80 value 77.951593 iter 90 value 77.768071 iter 100 value 77.492286 final value 77.492286 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.437899 iter 10 value 92.239835 iter 20 value 86.616732 iter 30 value 84.431765 iter 40 value 82.029442 iter 50 value 80.479403 iter 60 value 78.502320 iter 70 value 78.158272 iter 80 value 77.922975 iter 90 value 77.668450 iter 100 value 77.433685 final value 77.433685 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.910596 iter 10 value 94.456857 iter 20 value 93.941149 iter 30 value 91.449960 iter 40 value 89.658742 iter 50 value 86.701793 iter 60 value 85.711937 iter 70 value 82.125460 iter 80 value 81.668984 iter 90 value 80.854989 iter 100 value 80.178909 final value 80.178909 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 115.191363 iter 10 value 93.958188 iter 20 value 91.174773 iter 30 value 88.775600 iter 40 value 83.443285 iter 50 value 80.985669 iter 60 value 79.203627 iter 70 value 78.216200 iter 80 value 77.861696 iter 90 value 77.812810 iter 100 value 77.632918 final value 77.632918 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.641781 iter 10 value 93.399948 iter 20 value 88.067805 iter 30 value 87.404675 iter 40 value 86.648080 iter 50 value 86.480370 iter 60 value 82.405496 iter 70 value 81.106614 iter 80 value 80.883362 iter 90 value 80.843130 iter 100 value 80.297977 final value 80.297977 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.572728 iter 10 value 96.367632 iter 20 value 93.542612 iter 30 value 90.702301 iter 40 value 87.143513 iter 50 value 80.070199 iter 60 value 78.199678 iter 70 value 77.645814 iter 80 value 77.416436 iter 90 value 77.311014 iter 100 value 77.254502 final value 77.254502 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.943556 final value 94.054963 converged Fitting Repeat 2 # weights: 103 initial value 97.721942 final value 94.054206 converged Fitting Repeat 3 # weights: 103 initial value 100.773744 final value 94.054708 converged Fitting Repeat 4 # weights: 103 initial value 99.504986 final value 94.054388 converged Fitting Repeat 5 # weights: 103 initial value 107.569616 iter 10 value 94.054525 iter 20 value 94.052975 final value 94.052920 converged Fitting Repeat 1 # weights: 305 initial value 95.251815 iter 10 value 93.333367 iter 20 value 93.329721 iter 30 value 93.128075 iter 40 value 92.923084 iter 50 value 92.922773 final value 92.922681 converged Fitting Repeat 2 # weights: 305 initial value 98.889137 iter 10 value 93.335764 iter 20 value 93.334881 iter 30 value 93.041812 iter 40 value 88.980962 iter 50 value 81.896656 iter 60 value 81.717836 final value 81.714242 converged Fitting Repeat 3 # weights: 305 initial value 95.672255 iter 10 value 94.057400 iter 20 value 94.028413 final value 92.934256 converged Fitting Repeat 4 # weights: 305 initial value 94.469623 iter 10 value 92.688466 iter 20 value 92.607710 iter 30 value 89.992360 iter 40 value 89.976623 iter 50 value 89.828564 iter 60 value 83.762678 iter 70 value 83.733067 iter 80 value 81.687664 iter 90 value 81.342505 iter 100 value 81.295654 final value 81.295654 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.042481 iter 10 value 94.055008 iter 20 value 94.052943 iter 20 value 94.052942 iter 20 value 94.052942 final value 94.052942 converged Fitting Repeat 1 # weights: 507 initial value 107.005380 iter 10 value 93.912349 iter 20 value 93.858818 iter 30 value 83.754579 iter 40 value 80.890686 iter 50 value 79.564849 iter 60 value 77.666123 iter 70 value 77.275478 final value 77.275271 converged Fitting Repeat 2 # weights: 507 initial value 115.729956 iter 10 value 93.336884 iter 20 value 93.332360 iter 30 value 91.930610 iter 40 value 91.896153 iter 50 value 91.896023 iter 60 value 89.966708 iter 70 value 88.785031 iter 80 value 88.768982 iter 90 value 88.768754 iter 90 value 88.768754 final value 88.768754 converged Fitting Repeat 3 # weights: 507 initial value 113.380823 iter 10 value 94.061052 iter 20 value 94.037459 iter 30 value 91.193841 iter 40 value 90.181566 final value 90.176908 converged Fitting Repeat 4 # weights: 507 initial value 118.381228 iter 10 value 93.336170 iter 20 value 93.327927 iter 30 value 88.212758 iter 40 value 82.575382 iter 50 value 78.969406 iter 60 value 78.503917 iter 70 value 78.202016 iter 80 value 77.924582 iter 90 value 76.378788 iter 100 value 76.293684 final value 76.293684 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 98.072675 iter 10 value 90.829621 iter 20 value 79.611639 iter 30 value 77.855174 iter 40 value 76.975888 iter 50 value 76.896918 iter 60 value 76.895961 iter 70 value 76.859137 iter 80 value 76.761606 iter 90 value 76.747715 iter 100 value 76.744216 final value 76.744216 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.922984 iter 10 value 93.249256 final value 93.247059 converged Fitting Repeat 2 # weights: 103 initial value 105.205455 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 103.094139 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.884948 final value 94.354396 converged Fitting Repeat 5 # weights: 103 initial value 103.376685 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 105.652015 final value 94.354396 converged Fitting Repeat 2 # weights: 305 initial value 118.103807 final value 94.354396 converged Fitting Repeat 3 # weights: 305 initial value 105.501227 final value 94.354396 converged Fitting Repeat 4 # weights: 305 initial value 103.147333 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 103.215308 iter 10 value 93.543951 iter 20 value 93.300003 final value 93.300000 converged Fitting Repeat 1 # weights: 507 initial value 97.046627 iter 10 value 92.796084 iter 20 value 91.743818 final value 91.730488 converged Fitting Repeat 2 # weights: 507 initial value 120.400135 iter 10 value 94.484213 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 100.720023 iter 10 value 93.629411 iter 20 value 90.593342 iter 30 value 88.930404 iter 40 value 87.367623 iter 50 value 87.290085 final value 87.290072 converged Fitting Repeat 4 # weights: 507 initial value 111.358321 iter 10 value 93.940728 iter 20 value 93.720838 final value 93.720833 converged Fitting Repeat 5 # weights: 507 initial value 120.905865 iter 10 value 88.963080 iter 20 value 85.800617 iter 30 value 85.604307 iter 40 value 85.586513 iter 50 value 85.585135 iter 60 value 85.559499 iter 70 value 85.464037 iter 80 value 85.139653 iter 90 value 84.865077 final value 84.865035 converged Fitting Repeat 1 # weights: 103 initial value 100.928420 iter 10 value 94.431935 iter 20 value 89.297071 iter 30 value 86.615637 iter 40 value 85.015361 iter 50 value 84.282886 iter 60 value 84.100880 iter 70 value 83.942704 iter 80 value 83.592294 iter 90 value 83.483926 iter 100 value 83.479896 final value 83.479896 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.082012 iter 10 value 94.479144 iter 20 value 93.985131 iter 30 value 93.819290 iter 40 value 93.753213 iter 50 value 85.796222 iter 60 value 84.560240 iter 70 value 84.342386 iter 80 value 84.242042 iter 90 value 83.880928 iter 100 value 83.547468 final value 83.547468 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.244032 iter 10 value 94.491446 iter 20 value 94.117766 iter 30 value 93.630745 iter 40 value 88.883314 iter 50 value 84.426058 iter 60 value 83.966050 iter 70 value 83.699022 iter 80 value 83.540633 iter 90 value 83.412267 final value 83.412117 converged Fitting Repeat 4 # weights: 103 initial value 99.386847 iter 10 value 94.495886 iter 20 value 93.593507 iter 30 value 88.574287 iter 40 value 86.853351 iter 50 value 86.547952 iter 60 value 84.617061 iter 70 value 84.224580 iter 80 value 83.982949 iter 90 value 83.848071 iter 100 value 83.757896 final value 83.757896 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.993014 iter 10 value 94.853208 iter 20 value 94.486901 iter 30 value 94.459828 iter 40 value 94.452906 iter 50 value 94.396140 iter 60 value 93.703800 iter 70 value 91.953937 iter 80 value 91.418137 iter 90 value 90.831849 iter 100 value 90.648397 final value 90.648397 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.002877 iter 10 value 94.720895 iter 20 value 90.410487 iter 30 value 85.818660 iter 40 value 85.303165 iter 50 value 83.474692 iter 60 value 83.329775 iter 70 value 83.060701 iter 80 value 82.964311 iter 90 value 82.913385 iter 100 value 82.859112 final value 82.859112 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.732392 iter 10 value 94.007088 iter 20 value 92.139099 iter 30 value 89.459106 iter 40 value 86.564234 iter 50 value 84.778134 iter 60 value 84.132672 iter 70 value 83.769261 iter 80 value 82.988436 iter 90 value 82.190286 iter 100 value 82.094345 final value 82.094345 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.107551 iter 10 value 93.392916 iter 20 value 87.515325 iter 30 value 86.696471 iter 40 value 85.515782 iter 50 value 84.520327 iter 60 value 83.853311 iter 70 value 83.621961 iter 80 value 83.387126 iter 90 value 83.192590 iter 100 value 82.731716 final value 82.731716 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.888203 iter 10 value 94.435774 iter 20 value 93.777026 iter 30 value 88.489751 iter 40 value 88.080684 iter 50 value 88.035444 iter 60 value 87.907086 iter 70 value 85.858787 iter 80 value 85.563634 iter 90 value 84.692316 iter 100 value 84.217094 final value 84.217094 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.040137 iter 10 value 94.551570 iter 20 value 92.250660 iter 30 value 92.084156 iter 40 value 91.752624 iter 50 value 91.388652 iter 60 value 85.483880 iter 70 value 85.072802 iter 80 value 85.020515 iter 90 value 84.847135 iter 100 value 84.595869 final value 84.595869 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.135288 iter 10 value 89.943148 iter 20 value 87.631123 iter 30 value 87.526306 iter 40 value 87.399525 iter 50 value 87.154325 iter 60 value 84.442163 iter 70 value 83.929887 iter 80 value 83.603893 iter 90 value 83.535804 iter 100 value 83.343712 final value 83.343712 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.560724 iter 10 value 94.571904 iter 20 value 94.255069 iter 30 value 88.755866 iter 40 value 87.463520 iter 50 value 85.808393 iter 60 value 85.458575 iter 70 value 84.367164 iter 80 value 83.980591 iter 90 value 83.347069 iter 100 value 83.093840 final value 83.093840 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 126.838504 iter 10 value 94.991084 iter 20 value 92.355271 iter 30 value 87.354315 iter 40 value 86.651595 iter 50 value 86.415791 iter 60 value 85.980049 iter 70 value 85.324887 iter 80 value 83.914818 iter 90 value 82.878335 iter 100 value 82.668007 final value 82.668007 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.248712 iter 10 value 94.787311 iter 20 value 92.996233 iter 30 value 86.449038 iter 40 value 85.619744 iter 50 value 85.029356 iter 60 value 83.799719 iter 70 value 83.217058 iter 80 value 82.762012 iter 90 value 82.513465 iter 100 value 82.455406 final value 82.455406 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 124.882042 iter 10 value 94.717961 iter 20 value 94.021223 iter 30 value 93.916706 iter 40 value 91.572717 iter 50 value 88.524029 iter 60 value 85.472377 iter 70 value 84.125708 iter 80 value 83.612320 iter 90 value 82.906165 iter 100 value 82.755741 final value 82.755741 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.883241 final value 94.485600 converged Fitting Repeat 2 # weights: 103 initial value 94.576413 final value 94.485926 converged Fitting Repeat 3 # weights: 103 initial value 99.323175 final value 94.457094 converged Fitting Repeat 4 # weights: 103 initial value 96.264584 final value 94.485847 converged Fitting Repeat 5 # weights: 103 initial value 100.477783 final value 94.485821 converged Fitting Repeat 1 # weights: 305 initial value 103.045839 iter 10 value 93.211637 iter 20 value 93.206818 iter 30 value 92.854868 iter 40 value 92.203783 iter 50 value 91.430447 iter 60 value 91.339748 iter 70 value 91.251731 final value 91.251454 converged Fitting Repeat 2 # weights: 305 initial value 99.581434 iter 10 value 94.359444 iter 20 value 93.961867 iter 30 value 90.906870 iter 40 value 90.880326 iter 50 value 90.879788 iter 60 value 90.879687 iter 70 value 90.879470 iter 80 value 88.686544 iter 90 value 87.325426 iter 100 value 87.311398 final value 87.311398 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.075584 iter 10 value 94.488736 final value 94.484228 converged Fitting Repeat 4 # weights: 305 initial value 101.703220 iter 10 value 94.035416 iter 20 value 94.010981 iter 30 value 92.145642 iter 40 value 85.756984 iter 50 value 85.749903 iter 60 value 85.681192 iter 70 value 85.678660 iter 80 value 85.204563 final value 85.124664 converged Fitting Repeat 5 # weights: 305 initial value 95.853763 iter 10 value 94.433617 iter 20 value 94.271344 iter 30 value 86.953343 iter 40 value 84.936613 iter 50 value 84.889723 iter 60 value 84.877396 iter 70 value 84.863827 iter 80 value 84.714562 iter 90 value 84.047619 iter 100 value 83.919807 final value 83.919807 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.260693 iter 10 value 89.684790 iter 20 value 87.805500 iter 30 value 86.775160 iter 40 value 86.711514 iter 50 value 86.705167 iter 60 value 84.901384 iter 70 value 84.894159 iter 70 value 84.894159 iter 70 value 84.894159 final value 84.894159 converged Fitting Repeat 2 # weights: 507 initial value 96.382704 iter 10 value 94.362734 iter 20 value 93.828533 iter 30 value 93.624683 iter 40 value 93.623768 iter 50 value 90.892028 iter 60 value 88.078777 iter 70 value 87.954119 iter 80 value 86.321858 iter 90 value 85.328156 iter 100 value 85.262797 final value 85.262797 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.233905 iter 10 value 94.492443 iter 20 value 94.477614 iter 30 value 94.143165 iter 40 value 91.881774 iter 50 value 88.761458 iter 60 value 87.159023 iter 70 value 87.126689 iter 80 value 86.860709 iter 90 value 86.860449 iter 100 value 86.852939 final value 86.852939 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.115889 iter 10 value 94.362297 iter 20 value 94.244945 iter 30 value 89.086755 iter 40 value 86.918504 iter 50 value 84.069204 iter 60 value 83.370445 iter 70 value 83.356379 iter 80 value 83.018146 iter 90 value 82.863084 iter 100 value 82.366351 final value 82.366351 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.841873 iter 10 value 93.649060 iter 20 value 93.071628 iter 30 value 93.065956 iter 40 value 91.851435 iter 50 value 85.701592 iter 60 value 85.532754 iter 70 value 85.434696 iter 80 value 85.432481 iter 80 value 85.432480 final value 85.432480 converged Fitting Repeat 1 # weights: 103 initial value 98.659092 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.016749 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.375859 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.781896 final value 94.466823 converged Fitting Repeat 5 # weights: 103 initial value 103.481247 iter 10 value 91.249393 iter 20 value 87.537325 iter 30 value 87.536203 iter 40 value 82.774385 iter 50 value 82.467490 iter 60 value 82.466356 final value 82.466340 converged Fitting Repeat 1 # weights: 305 initial value 103.029929 final value 94.448052 converged Fitting Repeat 2 # weights: 305 initial value 101.737745 final value 94.466823 converged Fitting Repeat 3 # weights: 305 initial value 100.180321 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 102.830795 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.929898 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.903912 final value 94.305882 converged Fitting Repeat 2 # weights: 507 initial value 95.693953 iter 10 value 93.937686 iter 20 value 93.901432 iter 30 value 93.885325 final value 93.885053 converged Fitting Repeat 3 # weights: 507 initial value 115.455632 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 98.108352 final value 94.448052 converged Fitting Repeat 5 # weights: 507 initial value 101.841074 iter 10 value 94.432791 iter 20 value 94.427734 final value 94.427727 converged Fitting Repeat 1 # weights: 103 initial value 97.450587 iter 10 value 94.503442 iter 20 value 94.344644 iter 30 value 92.074516 iter 40 value 90.002224 iter 50 value 89.464343 iter 60 value 84.549590 iter 70 value 82.647743 iter 80 value 80.705503 iter 90 value 79.349649 iter 100 value 79.226059 final value 79.226059 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.665924 iter 10 value 94.348497 iter 20 value 86.611178 iter 30 value 85.853947 iter 40 value 84.764166 iter 50 value 84.492630 iter 60 value 83.549639 iter 70 value 82.614057 iter 80 value 82.464669 iter 90 value 82.348805 final value 82.322496 converged Fitting Repeat 3 # weights: 103 initial value 102.455910 iter 10 value 94.491895 iter 20 value 94.482839 iter 30 value 94.038740 iter 40 value 93.956959 iter 50 value 87.113790 iter 60 value 86.887977 iter 70 value 84.823617 iter 80 value 84.733571 iter 90 value 80.799808 iter 100 value 80.684446 final value 80.684446 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.256160 iter 10 value 94.486876 iter 20 value 94.148877 iter 30 value 86.011276 iter 40 value 82.075094 iter 50 value 81.574896 iter 60 value 81.411272 iter 70 value 81.027036 iter 80 value 80.757861 iter 90 value 80.684618 final value 80.684270 converged Fitting Repeat 5 # weights: 103 initial value 112.414701 iter 10 value 94.375150 iter 20 value 86.939007 iter 30 value 84.526650 iter 40 value 84.237996 iter 50 value 81.911317 iter 60 value 81.321842 iter 70 value 80.771639 iter 80 value 80.684295 final value 80.684270 converged Fitting Repeat 1 # weights: 305 initial value 101.726440 iter 10 value 94.511444 iter 20 value 94.423402 iter 30 value 87.279145 iter 40 value 84.848120 iter 50 value 83.198541 iter 60 value 80.228754 iter 70 value 79.949125 iter 80 value 79.532600 iter 90 value 79.440771 iter 100 value 79.424852 final value 79.424852 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.282992 iter 10 value 94.598057 iter 20 value 85.795398 iter 30 value 84.688860 iter 40 value 83.817495 iter 50 value 82.281316 iter 60 value 80.450476 iter 70 value 80.269025 iter 80 value 80.264858 iter 90 value 80.238691 iter 100 value 80.187527 final value 80.187527 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.419357 iter 10 value 91.744918 iter 20 value 88.393489 iter 30 value 87.805556 iter 40 value 85.430779 iter 50 value 83.167529 iter 60 value 82.400953 iter 70 value 80.903332 iter 80 value 80.607348 iter 90 value 79.600604 iter 100 value 78.109140 final value 78.109140 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 119.848138 iter 10 value 94.369475 iter 20 value 86.908587 iter 30 value 85.387934 iter 40 value 84.613058 iter 50 value 83.063276 iter 60 value 80.799969 iter 70 value 80.614487 iter 80 value 80.213852 iter 90 value 78.766080 iter 100 value 78.246392 final value 78.246392 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.499145 iter 10 value 94.369488 iter 20 value 85.915942 iter 30 value 84.594825 iter 40 value 82.782601 iter 50 value 82.360575 iter 60 value 81.824917 iter 70 value 79.178644 iter 80 value 78.210421 iter 90 value 77.561561 iter 100 value 77.532098 final value 77.532098 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.566065 iter 10 value 94.490925 iter 20 value 92.927826 iter 30 value 86.449583 iter 40 value 85.993967 iter 50 value 81.089297 iter 60 value 80.251707 iter 70 value 78.780732 iter 80 value 78.241002 iter 90 value 77.669640 iter 100 value 77.289245 final value 77.289245 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.792812 iter 10 value 94.844827 iter 20 value 92.117595 iter 30 value 83.484725 iter 40 value 81.197043 iter 50 value 79.178196 iter 60 value 78.519383 iter 70 value 78.263657 iter 80 value 77.935476 iter 90 value 77.567457 iter 100 value 77.561683 final value 77.561683 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.222252 iter 10 value 93.350613 iter 20 value 85.311289 iter 30 value 81.782029 iter 40 value 80.578214 iter 50 value 80.350081 iter 60 value 80.278319 iter 70 value 80.079736 iter 80 value 79.853612 iter 90 value 78.717021 iter 100 value 77.791510 final value 77.791510 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.511718 iter 10 value 94.491359 iter 20 value 86.836918 iter 30 value 86.274993 iter 40 value 86.106633 iter 50 value 82.497691 iter 60 value 81.500090 iter 70 value 77.790024 iter 80 value 77.460250 iter 90 value 77.327659 iter 100 value 77.224250 final value 77.224250 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.029585 iter 10 value 93.245038 iter 20 value 86.438596 iter 30 value 85.183411 iter 40 value 82.638345 iter 50 value 81.025339 iter 60 value 79.532349 iter 70 value 79.120973 iter 80 value 78.417443 iter 90 value 78.347926 iter 100 value 78.027233 final value 78.027233 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.347300 final value 94.485864 converged Fitting Repeat 2 # weights: 103 initial value 102.957997 iter 10 value 94.485856 iter 20 value 94.484274 final value 94.484217 converged Fitting Repeat 3 # weights: 103 initial value 97.679400 final value 94.485938 converged Fitting Repeat 4 # weights: 103 initial value 101.559109 iter 10 value 94.486260 iter 20 value 94.485754 iter 30 value 94.484356 iter 40 value 92.078766 iter 50 value 91.664048 iter 60 value 91.653976 iter 70 value 91.653767 iter 80 value 79.548615 iter 90 value 79.240982 iter 100 value 79.236688 final value 79.236688 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.100705 iter 10 value 94.486036 iter 20 value 94.482980 iter 30 value 90.771733 iter 40 value 82.798087 iter 50 value 82.793297 iter 60 value 79.493438 iter 70 value 79.460308 iter 80 value 79.345184 iter 90 value 79.298312 iter 100 value 79.293424 final value 79.293424 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 109.713089 iter 10 value 94.489333 iter 20 value 94.484386 iter 30 value 94.380491 iter 40 value 85.874630 iter 50 value 82.675325 iter 60 value 82.619986 iter 70 value 82.135535 iter 80 value 80.665762 iter 90 value 80.615011 iter 100 value 80.612401 final value 80.612401 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.474711 iter 10 value 94.489013 iter 20 value 91.258218 iter 30 value 87.541522 iter 40 value 87.538050 iter 50 value 86.197594 iter 60 value 83.036903 final value 83.036468 converged Fitting Repeat 3 # weights: 305 initial value 98.160419 iter 10 value 94.471294 iter 20 value 94.466608 iter 30 value 91.158203 iter 40 value 91.075485 iter 50 value 91.056866 iter 60 value 86.969432 iter 70 value 86.485674 iter 80 value 86.039074 iter 90 value 84.509121 final value 84.508365 converged Fitting Repeat 4 # weights: 305 initial value 101.774159 iter 10 value 94.488951 iter 20 value 94.481104 iter 30 value 93.316049 iter 40 value 87.359660 iter 50 value 87.349451 final value 87.341072 converged Fitting Repeat 5 # weights: 305 initial value 101.065293 iter 10 value 94.489189 iter 20 value 94.484232 iter 30 value 94.324266 iter 40 value 85.977824 final value 85.652761 converged Fitting Repeat 1 # weights: 507 initial value 97.436326 iter 10 value 94.435275 iter 20 value 94.430122 iter 30 value 94.416817 final value 94.410586 converged Fitting Repeat 2 # weights: 507 initial value 107.583019 iter 10 value 94.493108 iter 20 value 92.345242 iter 30 value 79.479339 iter 40 value 78.428824 iter 50 value 77.754588 iter 60 value 77.626397 iter 70 value 77.618204 iter 80 value 77.615983 iter 90 value 77.614859 iter 100 value 77.489778 final value 77.489778 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.050441 iter 10 value 94.490097 iter 20 value 94.375384 iter 30 value 94.174789 iter 40 value 86.349561 iter 50 value 85.733089 iter 60 value 85.697709 iter 70 value 85.697604 iter 80 value 84.277537 iter 90 value 81.903865 final value 81.903592 converged Fitting Repeat 4 # weights: 507 initial value 105.987410 iter 10 value 94.474821 iter 20 value 93.729552 iter 30 value 85.337250 iter 40 value 84.752434 iter 50 value 84.751563 iter 60 value 84.730031 iter 70 value 84.626951 iter 80 value 84.625613 iter 90 value 84.625110 iter 100 value 82.912050 final value 82.912050 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.579856 iter 10 value 86.494904 iter 20 value 85.722506 iter 30 value 85.715949 iter 40 value 85.709709 iter 50 value 85.660438 iter 60 value 85.587573 iter 70 value 81.881002 iter 80 value 81.761389 iter 90 value 81.688860 iter 100 value 81.688790 final value 81.688790 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 137.647954 iter 10 value 117.899078 iter 20 value 117.874707 iter 30 value 107.276308 iter 40 value 107.261916 final value 106.837099 converged Fitting Repeat 2 # weights: 507 initial value 128.404022 iter 10 value 113.434461 iter 20 value 111.168868 iter 30 value 111.167461 iter 40 value 111.036913 final value 111.031046 converged Fitting Repeat 3 # weights: 507 initial value 129.244453 iter 10 value 116.407074 iter 20 value 108.516625 iter 30 value 108.515866 iter 40 value 108.232143 final value 107.830113 converged Fitting Repeat 4 # weights: 507 initial value 138.254242 iter 10 value 117.427412 iter 20 value 117.377112 iter 30 value 117.210598 iter 40 value 117.206619 iter 50 value 117.157878 final value 117.156723 converged Fitting Repeat 5 # weights: 507 initial value 128.399472 iter 10 value 117.766974 iter 20 value 117.602144 iter 30 value 108.655136 iter 40 value 107.257935 iter 50 value 107.033629 iter 60 value 106.833536 iter 70 value 105.514820 iter 80 value 103.750982 iter 90 value 103.106196 iter 100 value 102.827637 final value 102.827637 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Feb 4 05:11:13 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 76.155 2.084 120.943
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 50.879 | 1.865 | 53.510 | |
FreqInteractors | 0.493 | 0.027 | 0.534 | |
calculateAAC | 0.072 | 0.015 | 0.088 | |
calculateAutocor | 0.864 | 0.110 | 0.992 | |
calculateCTDC | 0.149 | 0.010 | 0.160 | |
calculateCTDD | 1.187 | 0.043 | 1.243 | |
calculateCTDT | 0.436 | 0.022 | 0.464 | |
calculateCTriad | 0.741 | 0.056 | 0.806 | |
calculateDC | 0.238 | 0.026 | 0.264 | |
calculateF | 0.687 | 0.020 | 0.712 | |
calculateKSAAP | 0.280 | 0.021 | 0.303 | |
calculateQD_Sm | 3.532 | 0.230 | 3.861 | |
calculateTC | 4.652 | 0.465 | 5.354 | |
calculateTC_Sm | 0.521 | 0.030 | 0.553 | |
corr_plot | 50.509 | 1.869 | 53.148 | |
enrichfindP | 0.894 | 0.081 | 14.276 | |
enrichfind_hp | 0.121 | 0.027 | 1.130 | |
enrichplot | 0.809 | 0.011 | 0.824 | |
filter_missing_values | 0.002 | 0.001 | 0.003 | |
getFASTA | 0.121 | 0.016 | 7.552 | |
getHPI | 0.002 | 0.002 | 0.003 | |
get_negativePPI | 0.004 | 0.002 | 0.004 | |
get_positivePPI | 0.000 | 0.001 | 0.001 | |
impute_missing_data | 0.002 | 0.002 | 0.006 | |
plotPPI | 0.139 | 0.007 | 0.151 | |
pred_ensembel | 25.024 | 0.433 | 22.682 | |
var_imp | 52.400 | 2.093 | 59.069 | |