Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-03-20 12:10 -0400 (Thu, 20 Mar 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4756 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4487 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4514 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4441 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4406 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-03-18 22:25:12 -0400 (Tue, 18 Mar 2025) |
EndedAt: 2025-03-18 22:32:10 -0400 (Tue, 18 Mar 2025) |
EllapsedTime: 418.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.3 (2025-02-28) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 53.821 2.136 56.130 FSmethod 53.202 1.985 55.267 corr_plot 51.322 2.241 53.738 pred_ensembel 15.737 0.377 14.761 enrichfindP 0.485 0.077 9.536 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 98.842030 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.241576 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 100.850803 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 103.677096 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.490586 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 106.397397 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.050127 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 101.235878 iter 10 value 94.032323 final value 94.032297 converged Fitting Repeat 4 # weights: 305 initial value 99.349834 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 98.502090 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 104.235649 final value 94.467391 converged Fitting Repeat 2 # weights: 507 initial value 115.277663 iter 10 value 93.993242 final value 93.992106 converged Fitting Repeat 3 # weights: 507 initial value 96.735178 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 106.925591 iter 10 value 93.153723 iter 20 value 92.002185 final value 92.002139 converged Fitting Repeat 5 # weights: 507 initial value 96.827057 iter 10 value 85.957356 iter 20 value 83.836038 iter 30 value 83.592697 final value 83.592557 converged Fitting Repeat 1 # weights: 103 initial value 96.847908 iter 10 value 94.471217 iter 20 value 85.931247 iter 30 value 84.868794 iter 40 value 84.174296 iter 50 value 83.969000 iter 60 value 83.961527 final value 83.959706 converged Fitting Repeat 2 # weights: 103 initial value 98.727540 iter 10 value 94.471502 iter 20 value 92.053581 iter 30 value 91.774293 iter 40 value 91.619459 iter 50 value 91.300172 iter 60 value 86.030847 iter 70 value 84.590206 iter 80 value 84.549532 iter 90 value 84.466060 iter 100 value 84.168233 final value 84.168233 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.894551 iter 10 value 94.471678 iter 20 value 85.619243 iter 30 value 85.095366 iter 40 value 84.901864 iter 50 value 84.495081 iter 60 value 84.344290 final value 84.335323 converged Fitting Repeat 4 # weights: 103 initial value 97.037312 iter 10 value 94.377014 iter 20 value 93.155267 iter 30 value 91.188371 iter 40 value 88.251203 iter 50 value 85.956798 iter 60 value 85.513508 iter 70 value 85.221050 iter 80 value 83.778874 iter 90 value 83.130598 iter 100 value 82.734697 final value 82.734697 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 106.187106 iter 10 value 94.516332 iter 20 value 94.444229 iter 30 value 92.275039 iter 40 value 88.895035 iter 50 value 87.193843 iter 60 value 86.098623 iter 70 value 85.559711 iter 80 value 85.500125 final value 85.500114 converged Fitting Repeat 1 # weights: 305 initial value 99.741836 iter 10 value 94.483657 iter 20 value 88.259759 iter 30 value 84.768283 iter 40 value 82.774890 iter 50 value 81.867742 iter 60 value 81.454226 iter 70 value 81.268084 iter 80 value 81.145292 iter 90 value 80.989196 iter 100 value 80.943811 final value 80.943811 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.473153 iter 10 value 93.287998 iter 20 value 85.850475 iter 30 value 85.111731 iter 40 value 84.408276 iter 50 value 84.079854 iter 60 value 83.428969 iter 70 value 81.933007 iter 80 value 81.660144 iter 90 value 81.212594 iter 100 value 80.956144 final value 80.956144 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.724694 iter 10 value 94.467109 iter 20 value 87.463627 iter 30 value 85.489811 iter 40 value 85.331308 iter 50 value 84.832545 iter 60 value 83.919890 iter 70 value 82.532215 iter 80 value 81.756950 iter 90 value 81.456193 iter 100 value 81.414828 final value 81.414828 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 129.052042 iter 10 value 94.364417 iter 20 value 86.826321 iter 30 value 84.946509 iter 40 value 84.701283 iter 50 value 84.365142 iter 60 value 83.935194 iter 70 value 83.733135 iter 80 value 83.067093 iter 90 value 82.285546 iter 100 value 81.608887 final value 81.608887 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.098866 iter 10 value 94.499513 iter 20 value 88.328748 iter 30 value 85.327654 iter 40 value 85.145481 iter 50 value 84.999685 iter 60 value 84.537562 iter 70 value 84.364605 iter 80 value 84.249655 iter 90 value 83.219835 iter 100 value 81.903650 final value 81.903650 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.871518 iter 10 value 91.887241 iter 20 value 86.310316 iter 30 value 84.515510 iter 40 value 84.280344 iter 50 value 83.874327 iter 60 value 83.364166 iter 70 value 82.509822 iter 80 value 81.694695 iter 90 value 81.468474 iter 100 value 81.424519 final value 81.424519 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 127.735734 iter 10 value 101.071428 iter 20 value 94.466987 iter 30 value 93.742649 iter 40 value 89.853212 iter 50 value 85.992178 iter 60 value 84.947523 iter 70 value 83.823659 iter 80 value 83.033834 iter 90 value 82.605908 iter 100 value 81.606669 final value 81.606669 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.776543 iter 10 value 95.916070 iter 20 value 94.765392 iter 30 value 89.503100 iter 40 value 88.750129 iter 50 value 87.832189 iter 60 value 85.553389 iter 70 value 85.024745 iter 80 value 83.420998 iter 90 value 82.889839 iter 100 value 82.590504 final value 82.590504 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.188522 iter 10 value 94.951810 iter 20 value 94.511271 iter 30 value 94.280553 iter 40 value 92.777268 iter 50 value 91.372425 iter 60 value 91.190695 iter 70 value 89.695556 iter 80 value 86.941182 iter 90 value 84.295782 iter 100 value 83.337697 final value 83.337697 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.017297 iter 10 value 98.088326 iter 20 value 94.911700 iter 30 value 88.080946 iter 40 value 87.567603 iter 50 value 85.798532 iter 60 value 82.419208 iter 70 value 81.767582 iter 80 value 81.640921 iter 90 value 81.419825 iter 100 value 81.282855 final value 81.282855 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 112.065398 final value 94.485788 converged Fitting Repeat 2 # weights: 103 initial value 108.038235 final value 94.485619 converged Fitting Repeat 3 # weights: 103 initial value 96.410794 final value 94.485746 converged Fitting Repeat 4 # weights: 103 initial value 102.806391 final value 94.485920 converged Fitting Repeat 5 # weights: 103 initial value 94.649033 final value 94.485709 converged Fitting Repeat 1 # weights: 305 initial value 96.337531 iter 10 value 94.471762 iter 20 value 93.476439 iter 30 value 93.420270 iter 40 value 93.398746 final value 93.346388 converged Fitting Repeat 2 # weights: 305 initial value 113.509153 iter 10 value 94.489121 iter 20 value 94.484462 iter 30 value 94.467798 iter 40 value 94.467446 final value 94.467436 converged Fitting Repeat 3 # weights: 305 initial value 108.130852 iter 10 value 94.489294 iter 20 value 94.484238 iter 30 value 93.123739 iter 40 value 86.596463 iter 50 value 86.494781 final value 86.494608 converged Fitting Repeat 4 # weights: 305 initial value 97.501053 iter 10 value 94.487373 iter 20 value 91.501027 iter 30 value 88.916950 iter 40 value 88.914411 iter 50 value 88.856062 iter 60 value 88.555645 iter 70 value 87.693539 iter 80 value 84.943294 iter 90 value 84.645830 iter 100 value 83.065825 final value 83.065825 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 121.219306 iter 10 value 94.489266 iter 20 value 94.419166 iter 30 value 91.865027 iter 40 value 88.936072 iter 50 value 87.507616 iter 60 value 87.480310 iter 70 value 87.477265 iter 80 value 87.323592 iter 90 value 87.322659 final value 87.322652 converged Fitting Repeat 1 # weights: 507 initial value 96.142239 iter 10 value 94.227560 iter 20 value 87.297677 iter 30 value 87.004853 iter 40 value 86.993263 iter 50 value 86.993094 iter 60 value 86.498281 iter 70 value 86.310712 iter 80 value 82.576117 iter 90 value 81.582946 iter 100 value 81.581733 final value 81.581733 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.490479 iter 10 value 93.741236 iter 20 value 92.234446 iter 30 value 92.207373 iter 40 value 92.135576 iter 50 value 91.177486 iter 60 value 91.174330 iter 70 value 91.173739 iter 80 value 85.208131 iter 90 value 84.203065 iter 100 value 83.601167 final value 83.601167 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.297020 iter 10 value 94.490686 iter 20 value 94.474389 iter 30 value 94.468468 final value 94.467430 converged Fitting Repeat 4 # weights: 507 initial value 108.452697 iter 10 value 90.655083 iter 20 value 88.164052 iter 30 value 88.161788 iter 40 value 88.144593 iter 50 value 87.969746 iter 60 value 87.968247 iter 70 value 87.966251 iter 80 value 87.640232 iter 90 value 84.948652 iter 100 value 84.523734 final value 84.523734 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.370764 iter 10 value 94.492263 iter 20 value 94.357833 iter 30 value 85.513099 iter 30 value 85.513098 final value 85.513097 converged Fitting Repeat 1 # weights: 103 initial value 97.061510 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.370228 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.229587 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 95.943977 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 110.923711 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 96.689461 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 105.170732 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 95.190994 final value 93.915746 converged Fitting Repeat 4 # weights: 305 initial value 98.330143 final value 93.915746 converged Fitting Repeat 5 # weights: 305 initial value 109.163412 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 97.077325 iter 10 value 89.978418 iter 20 value 87.053989 iter 30 value 86.017517 iter 40 value 85.304009 iter 50 value 85.303335 final value 85.303326 converged Fitting Repeat 2 # weights: 507 initial value 107.613997 iter 10 value 92.542788 iter 20 value 86.022637 iter 30 value 83.514597 iter 40 value 83.470811 iter 50 value 83.462284 iter 60 value 83.461374 iter 70 value 83.461309 final value 83.461301 converged Fitting Repeat 3 # weights: 507 initial value 97.587940 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 101.472054 final value 94.027933 converged Fitting Repeat 5 # weights: 507 initial value 94.907155 iter 10 value 93.896209 final value 93.896199 converged Fitting Repeat 1 # weights: 103 initial value 98.563122 iter 10 value 94.058897 iter 20 value 94.000869 iter 30 value 88.700309 iter 40 value 87.821608 iter 50 value 87.442603 iter 60 value 86.978807 iter 70 value 86.725454 final value 86.717827 converged Fitting Repeat 2 # weights: 103 initial value 97.613382 iter 10 value 93.202566 iter 20 value 90.016055 iter 30 value 88.024867 iter 40 value 87.529795 iter 50 value 87.297025 iter 60 value 86.762972 iter 70 value 86.717470 final value 86.717466 converged Fitting Repeat 3 # weights: 103 initial value 99.411150 iter 10 value 94.046366 iter 20 value 93.238601 iter 30 value 92.897071 iter 40 value 92.858770 iter 50 value 88.888347 iter 60 value 87.951111 iter 70 value 86.020150 iter 80 value 85.361915 iter 90 value 84.576070 iter 100 value 84.312592 final value 84.312592 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.177067 iter 10 value 90.747846 iter 20 value 86.672797 iter 30 value 86.401652 iter 40 value 86.110622 iter 50 value 85.708322 iter 60 value 85.560351 iter 70 value 85.322569 iter 80 value 85.296778 final value 85.295585 converged Fitting Repeat 5 # weights: 103 initial value 98.325600 iter 10 value 94.048198 iter 20 value 93.643525 iter 30 value 88.792623 iter 40 value 88.222356 iter 50 value 87.714811 iter 60 value 87.267277 iter 70 value 86.790324 final value 86.717585 converged Fitting Repeat 1 # weights: 305 initial value 114.494606 iter 10 value 95.008903 iter 20 value 88.681572 iter 30 value 88.410790 iter 40 value 86.972486 iter 50 value 84.839305 iter 60 value 84.009220 iter 70 value 83.851844 iter 80 value 83.647656 iter 90 value 83.512253 iter 100 value 83.228374 final value 83.228374 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.495683 iter 10 value 94.246777 iter 20 value 88.482272 iter 30 value 87.973206 iter 40 value 86.494790 iter 50 value 85.915129 iter 60 value 85.674952 iter 70 value 84.810266 iter 80 value 83.965843 iter 90 value 83.043520 iter 100 value 82.846200 final value 82.846200 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.193532 iter 10 value 94.112499 iter 20 value 93.009979 iter 30 value 91.559257 iter 40 value 89.183983 iter 50 value 87.166942 iter 60 value 86.240170 iter 70 value 85.203807 iter 80 value 85.037545 iter 90 value 84.650038 iter 100 value 83.689390 final value 83.689390 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.494182 iter 10 value 94.719322 iter 20 value 94.193022 iter 30 value 88.918603 iter 40 value 87.821298 iter 50 value 87.258883 iter 60 value 86.383588 iter 70 value 86.306526 iter 80 value 85.869921 iter 90 value 85.501581 iter 100 value 84.954646 final value 84.954646 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.227831 iter 10 value 94.117189 iter 20 value 94.013335 iter 30 value 93.770795 iter 40 value 89.987884 iter 50 value 88.871097 iter 60 value 88.004021 iter 70 value 87.659741 iter 80 value 87.203928 iter 90 value 86.410697 iter 100 value 83.746197 final value 83.746197 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 117.323477 iter 10 value 99.709806 iter 20 value 93.236771 iter 30 value 88.448206 iter 40 value 87.265178 iter 50 value 85.475640 iter 60 value 84.484549 iter 70 value 84.162954 iter 80 value 83.734410 iter 90 value 83.474511 iter 100 value 83.166875 final value 83.166875 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.137654 iter 10 value 91.325830 iter 20 value 89.381104 iter 30 value 88.937587 iter 40 value 88.080855 iter 50 value 87.687810 iter 60 value 87.053825 iter 70 value 86.798213 iter 80 value 86.688013 iter 90 value 86.518206 iter 100 value 85.130270 final value 85.130270 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.836172 iter 10 value 94.094332 iter 20 value 90.340232 iter 30 value 88.652230 iter 40 value 87.898450 iter 50 value 85.186789 iter 60 value 83.826079 iter 70 value 83.755276 iter 80 value 83.587843 iter 90 value 83.323951 iter 100 value 83.141269 final value 83.141269 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.391546 iter 10 value 93.856277 iter 20 value 89.432931 iter 30 value 87.695840 iter 40 value 87.312830 iter 50 value 87.142910 iter 60 value 86.773492 iter 70 value 85.888890 iter 80 value 85.259005 iter 90 value 83.349842 iter 100 value 82.965247 final value 82.965247 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 116.155756 iter 10 value 95.023922 iter 20 value 93.703905 iter 30 value 89.210196 iter 40 value 85.574724 iter 50 value 85.147454 iter 60 value 84.919080 iter 70 value 84.625731 iter 80 value 84.550173 iter 90 value 84.281801 iter 100 value 83.498906 final value 83.498906 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.708299 final value 94.054502 converged Fitting Repeat 2 # weights: 103 initial value 98.400927 final value 94.054462 converged Fitting Repeat 3 # weights: 103 initial value 109.432052 final value 94.054223 converged Fitting Repeat 4 # weights: 103 initial value 100.788684 final value 94.054644 converged Fitting Repeat 5 # weights: 103 initial value 102.503108 iter 10 value 94.054625 final value 94.052920 converged Fitting Repeat 1 # weights: 305 initial value 103.219573 iter 10 value 94.032813 iter 20 value 88.968171 iter 30 value 88.131821 iter 30 value 88.131821 final value 88.131821 converged Fitting Repeat 2 # weights: 305 initial value 116.322159 iter 10 value 93.980439 iter 20 value 93.921861 iter 30 value 93.139307 iter 40 value 92.816918 iter 50 value 92.810598 iter 60 value 92.810435 iter 70 value 92.324236 iter 80 value 91.788602 iter 90 value 88.504331 iter 100 value 84.234331 final value 84.234331 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.011747 iter 10 value 94.057500 iter 20 value 93.531172 final value 93.510752 converged Fitting Repeat 4 # weights: 305 initial value 101.226958 iter 10 value 94.057768 iter 20 value 93.986070 iter 30 value 92.340751 iter 40 value 92.263763 iter 50 value 92.263524 iter 60 value 92.245355 final value 92.241323 converged Fitting Repeat 5 # weights: 305 initial value 101.868671 iter 10 value 94.057606 iter 20 value 94.053007 iter 30 value 93.916699 final value 93.916342 converged Fitting Repeat 1 # weights: 507 initial value 94.635497 iter 10 value 94.056960 iter 20 value 89.568031 final value 88.692038 converged Fitting Repeat 2 # weights: 507 initial value 104.885765 iter 10 value 93.923960 iter 20 value 93.916230 iter 30 value 93.883502 iter 40 value 89.089493 iter 50 value 88.147272 iter 60 value 88.078931 final value 88.078867 converged Fitting Repeat 3 # weights: 507 initial value 98.890136 iter 10 value 94.059809 iter 20 value 88.735053 iter 30 value 86.569055 iter 40 value 82.873928 iter 50 value 82.189707 iter 60 value 82.188067 final value 82.187346 converged Fitting Repeat 4 # weights: 507 initial value 105.800572 iter 10 value 92.536791 iter 20 value 86.645908 iter 30 value 85.589789 iter 40 value 85.587006 iter 50 value 85.579537 iter 60 value 84.686002 iter 70 value 84.611386 iter 80 value 84.606690 final value 84.606599 converged Fitting Repeat 5 # weights: 507 initial value 104.474596 iter 10 value 93.356309 iter 20 value 93.341883 iter 30 value 93.335901 iter 40 value 93.268202 iter 50 value 93.226472 iter 60 value 93.219973 iter 70 value 93.218749 iter 80 value 92.843866 iter 90 value 88.983099 iter 100 value 87.863659 final value 87.863659 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.312659 iter 10 value 92.945375 final value 92.945355 converged Fitting Repeat 2 # weights: 103 initial value 96.263129 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.181455 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 94.813898 iter 10 value 89.329929 iter 20 value 84.636648 iter 30 value 84.633492 iter 30 value 84.633491 iter 40 value 83.681456 final value 83.681351 converged Fitting Repeat 5 # weights: 103 initial value 105.802262 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.658148 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 101.034934 final value 94.052874 converged Fitting Repeat 3 # weights: 305 initial value 103.551063 final value 93.671508 converged Fitting Repeat 4 # weights: 305 initial value 101.661968 final value 94.052908 converged Fitting Repeat 5 # weights: 305 initial value 110.268067 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 109.797088 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 112.664515 iter 10 value 93.428426 iter 20 value 86.583894 iter 30 value 82.605021 iter 40 value 78.680864 iter 50 value 76.369042 iter 60 value 76.300806 final value 76.300787 converged Fitting Repeat 3 # weights: 507 initial value 121.083199 iter 10 value 93.097519 iter 20 value 92.576818 final value 92.551894 converged Fitting Repeat 4 # weights: 507 initial value 94.852719 iter 10 value 94.052875 iter 20 value 93.972116 final value 93.869755 converged Fitting Repeat 5 # weights: 507 initial value 106.610111 iter 10 value 92.945361 final value 92.945355 converged Fitting Repeat 1 # weights: 103 initial value 97.188843 iter 10 value 93.809094 iter 20 value 93.232274 iter 30 value 91.425987 iter 40 value 82.954103 iter 50 value 82.775211 iter 60 value 82.628433 iter 70 value 82.457397 iter 80 value 81.801307 iter 90 value 80.391998 iter 100 value 80.226198 final value 80.226198 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.419680 iter 10 value 90.712904 iter 20 value 86.387623 iter 30 value 85.177197 iter 40 value 82.831871 iter 50 value 82.711218 iter 60 value 82.672609 iter 70 value 82.564314 iter 80 value 82.388301 iter 90 value 80.124111 iter 100 value 79.699282 final value 79.699282 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.860493 iter 10 value 94.063633 iter 20 value 84.135256 iter 30 value 83.621304 iter 40 value 82.638999 iter 50 value 82.399989 iter 60 value 82.383907 iter 70 value 82.383548 final value 82.383500 converged Fitting Repeat 4 # weights: 103 initial value 110.567398 iter 10 value 93.940431 iter 20 value 91.475587 iter 30 value 91.411411 iter 40 value 91.398195 iter 50 value 91.397543 final value 91.397538 converged Fitting Repeat 5 # weights: 103 initial value 97.834498 iter 10 value 94.058447 iter 20 value 93.374647 iter 30 value 93.271349 iter 40 value 93.229747 iter 50 value 91.157017 iter 60 value 83.010634 iter 70 value 80.870652 iter 80 value 80.449570 iter 90 value 79.733051 iter 100 value 79.076907 final value 79.076907 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 117.804908 iter 10 value 99.059916 iter 20 value 93.875312 iter 30 value 85.674533 iter 40 value 83.408778 iter 50 value 81.988116 iter 60 value 81.468857 iter 70 value 80.515881 iter 80 value 78.642613 iter 90 value 78.255090 iter 100 value 78.073826 final value 78.073826 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.312011 iter 10 value 94.234982 iter 20 value 93.197633 iter 30 value 92.295579 iter 40 value 90.999703 iter 50 value 86.726743 iter 60 value 86.304540 iter 70 value 84.495624 iter 80 value 81.922395 iter 90 value 79.914271 iter 100 value 78.922824 final value 78.922824 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.068466 iter 10 value 94.226755 iter 20 value 86.760960 iter 30 value 83.034517 iter 40 value 82.419050 iter 50 value 81.278404 iter 60 value 80.189091 iter 70 value 79.886644 iter 80 value 79.866046 iter 90 value 79.387368 iter 100 value 78.975337 final value 78.975337 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.422540 iter 10 value 94.989600 iter 20 value 94.064843 iter 30 value 92.876427 iter 40 value 92.172297 iter 50 value 87.029061 iter 60 value 85.471258 iter 70 value 81.808773 iter 80 value 80.995391 iter 90 value 80.270047 iter 100 value 79.892255 final value 79.892255 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.383311 iter 10 value 93.810125 iter 20 value 86.225996 iter 30 value 82.891391 iter 40 value 82.256731 iter 50 value 82.132163 iter 60 value 81.849818 iter 70 value 81.765271 iter 80 value 81.344881 iter 90 value 80.416225 iter 100 value 78.861877 final value 78.861877 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.723428 iter 10 value 93.362259 iter 20 value 91.024439 iter 30 value 85.749380 iter 40 value 81.886466 iter 50 value 81.169371 iter 60 value 80.059091 iter 70 value 79.524579 iter 80 value 78.588655 iter 90 value 78.120924 iter 100 value 77.776192 final value 77.776192 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.344243 iter 10 value 94.322000 iter 20 value 93.445168 iter 30 value 93.160594 iter 40 value 92.395157 iter 50 value 90.036542 iter 60 value 86.727607 iter 70 value 84.851845 iter 80 value 79.038210 iter 90 value 78.559079 iter 100 value 78.244954 final value 78.244954 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 119.829954 iter 10 value 95.266547 iter 20 value 86.423044 iter 30 value 81.925055 iter 40 value 80.144479 iter 50 value 78.187892 iter 60 value 77.762886 iter 70 value 77.643706 iter 80 value 77.596317 iter 90 value 77.374994 iter 100 value 77.191544 final value 77.191544 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 127.234981 iter 10 value 97.347029 iter 20 value 92.410873 iter 30 value 86.323156 iter 40 value 83.064021 iter 50 value 81.920346 iter 60 value 81.317809 iter 70 value 81.139316 iter 80 value 80.530729 iter 90 value 79.655230 iter 100 value 79.506628 final value 79.506628 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.741935 iter 10 value 93.846305 iter 20 value 85.947719 iter 30 value 84.426256 iter 40 value 84.072716 iter 50 value 83.679612 iter 60 value 82.707983 iter 70 value 81.711486 iter 80 value 78.843618 iter 90 value 78.002010 iter 100 value 77.737756 final value 77.737756 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.429155 final value 94.054358 converged Fitting Repeat 2 # weights: 103 initial value 97.254230 iter 10 value 94.054832 iter 20 value 94.028519 iter 30 value 92.946294 final value 92.946290 converged Fitting Repeat 3 # weights: 103 initial value 101.978591 iter 10 value 94.054756 iter 20 value 93.747245 iter 30 value 92.807816 iter 40 value 92.801840 iter 50 value 92.801535 iter 60 value 92.801228 iter 70 value 92.793659 iter 80 value 92.755254 iter 90 value 92.755005 final value 92.755003 converged Fitting Repeat 4 # weights: 103 initial value 98.689285 iter 10 value 92.947425 iter 20 value 92.946508 final value 92.172121 converged Fitting Repeat 5 # weights: 103 initial value 96.000770 final value 94.054564 converged Fitting Repeat 1 # weights: 305 initial value 97.182932 iter 10 value 94.057446 iter 20 value 94.052992 iter 30 value 92.732063 iter 40 value 91.901012 final value 91.900996 converged Fitting Repeat 2 # weights: 305 initial value 100.521873 iter 10 value 94.057140 iter 20 value 93.449081 iter 30 value 92.168526 iter 40 value 92.168045 iter 50 value 92.167973 final value 92.167671 converged Fitting Repeat 3 # weights: 305 initial value 98.483725 iter 10 value 92.096127 iter 20 value 91.914235 iter 30 value 91.911257 iter 40 value 91.910735 iter 50 value 91.908950 iter 60 value 91.908703 final value 91.907810 converged Fitting Repeat 4 # weights: 305 initial value 111.463946 iter 10 value 94.056911 iter 20 value 94.053005 final value 94.052925 converged Fitting Repeat 5 # weights: 305 initial value 110.002940 iter 10 value 92.950773 iter 20 value 92.842297 iter 30 value 92.827595 iter 40 value 92.334011 iter 50 value 92.096497 iter 60 value 92.042721 final value 92.029964 converged Fitting Repeat 1 # weights: 507 initial value 102.307742 iter 10 value 92.962724 iter 20 value 92.950510 iter 30 value 92.036038 iter 40 value 85.709263 iter 50 value 79.799100 iter 60 value 79.308933 iter 70 value 79.156958 iter 80 value 78.866627 iter 90 value 77.573203 iter 100 value 76.980787 final value 76.980787 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 96.979956 iter 10 value 94.060555 iter 20 value 93.978688 iter 30 value 85.533591 iter 40 value 84.491557 iter 50 value 80.236616 iter 60 value 80.141237 iter 70 value 80.134665 iter 80 value 79.470316 iter 90 value 78.333682 iter 100 value 78.256250 final value 78.256250 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.467451 iter 10 value 94.060913 iter 20 value 94.053941 iter 30 value 92.250207 final value 92.248314 converged Fitting Repeat 4 # weights: 507 initial value 94.694189 iter 10 value 88.859732 iter 20 value 86.484791 iter 30 value 86.454906 iter 40 value 86.452183 final value 86.451104 converged Fitting Repeat 5 # weights: 507 initial value 136.917093 iter 10 value 94.064753 iter 20 value 93.982676 iter 30 value 88.600358 iter 40 value 87.067079 iter 50 value 84.819313 iter 60 value 84.278832 iter 70 value 84.170449 iter 80 value 83.689077 iter 90 value 82.968493 iter 100 value 77.954147 final value 77.954147 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.651693 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.534990 final value 94.467391 converged Fitting Repeat 3 # weights: 103 initial value 105.327150 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 101.105280 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.752195 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.501074 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.069255 iter 10 value 89.487297 iter 20 value 89.069268 iter 30 value 89.069209 iter 40 value 89.067822 iter 50 value 89.066853 final value 89.066850 converged Fitting Repeat 3 # weights: 305 initial value 99.590632 final value 94.467392 converged Fitting Repeat 4 # weights: 305 initial value 98.733862 iter 10 value 85.460595 iter 20 value 85.198540 final value 85.196923 converged Fitting Repeat 5 # weights: 305 initial value 98.047606 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 103.999275 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 104.973582 iter 10 value 94.468005 final value 94.467392 converged Fitting Repeat 3 # weights: 507 initial value 110.192489 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 112.731541 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 94.118245 iter 10 value 90.724012 iter 20 value 90.716649 iter 30 value 90.716217 iter 30 value 90.716217 iter 30 value 90.716217 final value 90.716217 converged Fitting Repeat 1 # weights: 103 initial value 100.849715 iter 10 value 94.451507 iter 20 value 94.104324 iter 30 value 87.821209 iter 40 value 83.159706 iter 50 value 82.753665 iter 60 value 81.707948 iter 70 value 81.584766 final value 81.583458 converged Fitting Repeat 2 # weights: 103 initial value 105.163178 iter 10 value 90.929421 iter 20 value 85.143453 iter 30 value 80.514535 iter 40 value 80.235577 iter 50 value 79.888800 iter 60 value 79.746688 final value 79.743729 converged Fitting Repeat 3 # weights: 103 initial value 103.277535 iter 10 value 94.322505 iter 20 value 90.560994 iter 30 value 81.872321 iter 40 value 81.686843 iter 50 value 81.592469 iter 60 value 81.583732 final value 81.583458 converged Fitting Repeat 4 # weights: 103 initial value 108.785119 iter 10 value 94.487957 iter 20 value 93.928853 iter 30 value 88.152110 iter 40 value 87.526783 iter 50 value 83.144287 iter 60 value 82.890196 iter 70 value 81.208061 iter 80 value 80.749609 iter 90 value 80.405923 iter 100 value 80.182922 final value 80.182922 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.635223 iter 10 value 94.489353 iter 10 value 94.489353 iter 20 value 94.398624 iter 30 value 86.193280 iter 40 value 84.921599 iter 50 value 84.693784 iter 60 value 82.405625 iter 70 value 81.673660 iter 80 value 81.587629 iter 90 value 81.583523 final value 81.583458 converged Fitting Repeat 1 # weights: 305 initial value 102.743544 iter 10 value 92.264644 iter 20 value 83.886061 iter 30 value 83.605269 iter 40 value 81.533768 iter 50 value 80.266785 iter 60 value 79.539194 iter 70 value 79.310616 iter 80 value 79.247994 iter 90 value 79.147832 iter 100 value 79.126717 final value 79.126717 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.533962 iter 10 value 94.410839 iter 20 value 82.588099 iter 30 value 81.475363 iter 40 value 81.363209 iter 50 value 81.334611 iter 60 value 81.293502 iter 70 value 80.963211 iter 80 value 80.340849 iter 90 value 79.519744 iter 100 value 78.783365 final value 78.783365 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.524074 iter 10 value 95.023119 iter 20 value 94.266659 iter 30 value 94.062381 iter 40 value 85.640967 iter 50 value 81.902089 iter 60 value 81.132665 iter 70 value 80.897091 iter 80 value 80.754666 iter 90 value 80.577003 iter 100 value 80.298508 final value 80.298508 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 126.443609 iter 10 value 99.981334 iter 20 value 92.133238 iter 30 value 84.223271 iter 40 value 83.895167 iter 50 value 83.736202 iter 60 value 81.918442 iter 70 value 80.289083 iter 80 value 79.920354 iter 90 value 79.210687 iter 100 value 78.899349 final value 78.899349 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.574626 iter 10 value 94.465905 iter 20 value 89.067730 iter 30 value 84.449326 iter 40 value 82.615875 iter 50 value 81.228908 iter 60 value 80.639362 iter 70 value 80.274024 iter 80 value 79.977297 iter 90 value 79.540084 iter 100 value 79.073789 final value 79.073789 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.410865 iter 10 value 94.864833 iter 20 value 94.490745 iter 30 value 93.918309 iter 40 value 92.056756 iter 50 value 85.399727 iter 60 value 83.870048 iter 70 value 82.565450 iter 80 value 82.303051 iter 90 value 82.069210 iter 100 value 80.731831 final value 80.731831 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.219614 iter 10 value 94.354501 iter 20 value 84.745491 iter 30 value 83.221065 iter 40 value 82.632717 iter 50 value 82.326381 iter 60 value 81.992150 iter 70 value 80.949048 iter 80 value 80.236192 iter 90 value 79.528269 iter 100 value 79.080374 final value 79.080374 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.937565 iter 10 value 93.446934 iter 20 value 85.899049 iter 30 value 82.689463 iter 40 value 81.349840 iter 50 value 81.142616 iter 60 value 80.697845 iter 70 value 80.174730 iter 80 value 79.856738 iter 90 value 79.588167 iter 100 value 79.118867 final value 79.118867 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 123.326759 iter 10 value 94.646235 iter 20 value 92.924304 iter 30 value 92.278060 iter 40 value 90.938267 iter 50 value 88.887062 iter 60 value 82.887156 iter 70 value 81.693503 iter 80 value 81.258217 iter 90 value 80.370452 iter 100 value 79.887347 final value 79.887347 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.909441 iter 10 value 87.867198 iter 20 value 84.708264 iter 30 value 82.850455 iter 40 value 81.023705 iter 50 value 80.772180 iter 60 value 80.558577 iter 70 value 80.228718 iter 80 value 79.591577 iter 90 value 79.404397 iter 100 value 79.101362 final value 79.101362 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.874217 iter 10 value 90.700183 iter 20 value 86.115409 iter 30 value 85.748575 iter 40 value 85.635178 iter 50 value 85.041538 iter 60 value 83.801989 iter 70 value 83.560504 iter 80 value 83.427876 final value 83.427790 converged Fitting Repeat 2 # weights: 103 initial value 97.465253 final value 94.486080 converged Fitting Repeat 3 # weights: 103 initial value 104.672884 final value 94.485892 converged Fitting Repeat 4 # weights: 103 initial value 99.258688 final value 94.485704 converged Fitting Repeat 5 # weights: 103 initial value 106.369745 iter 10 value 94.469197 iter 20 value 94.467709 iter 30 value 94.467401 final value 94.467399 converged Fitting Repeat 1 # weights: 305 initial value 97.960676 iter 10 value 91.682257 iter 20 value 91.656561 iter 30 value 91.621356 final value 91.614658 converged Fitting Repeat 2 # weights: 305 initial value 115.393419 iter 10 value 94.490602 iter 20 value 94.469813 iter 30 value 94.468852 iter 40 value 83.959164 iter 50 value 81.877215 iter 60 value 80.791847 iter 70 value 80.789440 iter 80 value 80.204369 iter 90 value 79.042936 iter 100 value 79.040950 final value 79.040950 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.166405 iter 10 value 94.504852 iter 20 value 93.366269 iter 30 value 83.196113 iter 40 value 83.164628 iter 50 value 83.154102 iter 60 value 83.142530 iter 70 value 83.094441 iter 80 value 83.006107 iter 80 value 83.006106 iter 80 value 83.006106 final value 83.006106 converged Fitting Repeat 4 # weights: 305 initial value 105.147447 iter 10 value 94.406117 iter 20 value 93.911077 iter 30 value 82.571641 iter 40 value 81.164982 iter 50 value 79.942041 iter 60 value 79.928247 iter 70 value 79.902456 iter 80 value 79.901806 iter 90 value 79.859603 iter 100 value 79.779267 final value 79.779267 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.693887 iter 10 value 94.472177 iter 20 value 94.467751 iter 30 value 83.258591 iter 40 value 83.188473 iter 50 value 83.187531 final value 83.187525 converged Fitting Repeat 1 # weights: 507 initial value 103.390362 iter 10 value 94.492094 iter 20 value 94.296318 iter 30 value 86.275041 iter 40 value 83.822543 iter 50 value 79.477831 iter 60 value 78.447222 iter 70 value 77.572300 iter 80 value 77.550910 iter 90 value 77.549953 iter 100 value 77.529245 final value 77.529245 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 137.547181 iter 10 value 94.492133 iter 20 value 94.484368 iter 30 value 86.556265 iter 40 value 82.942289 iter 50 value 82.224828 iter 60 value 81.247433 iter 70 value 81.169459 iter 80 value 81.143297 iter 90 value 80.819028 iter 100 value 79.797156 final value 79.797156 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 129.688887 iter 10 value 94.492296 iter 20 value 94.439367 iter 30 value 89.647497 iter 40 value 81.490136 iter 50 value 81.478567 iter 50 value 81.478567 iter 50 value 81.478567 final value 81.478567 converged Fitting Repeat 4 # weights: 507 initial value 121.652958 iter 10 value 94.492873 iter 20 value 94.485122 iter 30 value 94.476562 iter 40 value 94.214101 iter 50 value 92.955482 iter 60 value 91.510081 iter 70 value 91.508844 iter 80 value 91.274920 iter 90 value 83.880349 iter 100 value 81.800401 final value 81.800401 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 100.954247 iter 10 value 87.127128 iter 20 value 85.578091 iter 30 value 84.255853 iter 40 value 84.247131 iter 50 value 84.240734 iter 60 value 84.235763 iter 70 value 84.235133 final value 84.234415 converged Fitting Repeat 1 # weights: 103 initial value 108.996602 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 95.736402 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 108.931578 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 104.096479 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.641933 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 105.551525 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 104.915791 iter 10 value 93.183528 iter 20 value 91.085490 iter 30 value 83.731715 iter 40 value 83.487038 final value 83.485378 converged Fitting Repeat 3 # weights: 305 initial value 101.780620 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 100.955631 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.290919 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 100.352842 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 96.939202 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 101.147990 iter 10 value 94.327106 iter 20 value 94.325946 iter 20 value 94.325946 iter 20 value 94.325946 final value 94.325946 converged Fitting Repeat 4 # weights: 507 initial value 98.645720 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 113.879025 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 98.192103 iter 10 value 91.560377 iter 20 value 83.872667 iter 30 value 83.285822 iter 40 value 83.197849 iter 50 value 83.103931 iter 60 value 82.442480 iter 70 value 81.483322 iter 80 value 81.381723 iter 90 value 81.375785 final value 81.375313 converged Fitting Repeat 2 # weights: 103 initial value 99.586709 iter 10 value 94.460260 iter 20 value 94.260797 iter 30 value 88.383592 iter 40 value 87.562430 iter 50 value 84.930817 iter 60 value 84.479213 iter 70 value 84.457374 iter 80 value 84.112054 iter 90 value 83.644537 iter 100 value 83.451314 final value 83.451314 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.215064 iter 10 value 94.496401 iter 20 value 92.256575 iter 30 value 90.696888 iter 40 value 89.923466 iter 50 value 89.335836 iter 60 value 89.281161 final value 89.280519 converged Fitting Repeat 4 # weights: 103 initial value 101.047517 iter 10 value 94.490827 iter 20 value 94.479110 iter 30 value 90.750671 iter 40 value 90.072027 iter 50 value 89.772182 iter 60 value 89.523779 iter 70 value 89.407451 final value 89.404632 converged Fitting Repeat 5 # weights: 103 initial value 98.833462 iter 10 value 94.488350 iter 20 value 92.994730 iter 30 value 90.098122 iter 40 value 88.353408 iter 50 value 88.281876 iter 60 value 85.491488 iter 70 value 85.244689 iter 80 value 85.224855 iter 90 value 84.661646 iter 100 value 83.577244 final value 83.577244 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 114.190276 iter 10 value 94.591974 iter 20 value 88.091535 iter 30 value 86.390916 iter 40 value 85.848102 iter 50 value 85.064078 iter 60 value 81.913465 iter 70 value 80.295125 iter 80 value 78.994850 iter 90 value 78.784976 iter 100 value 78.429526 final value 78.429526 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.446282 iter 10 value 94.538050 iter 20 value 92.923495 iter 30 value 90.975308 iter 40 value 85.850652 iter 50 value 85.445005 iter 60 value 83.113067 iter 70 value 81.564117 iter 80 value 81.360649 iter 90 value 81.060434 iter 100 value 79.429166 final value 79.429166 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.517591 iter 10 value 93.893708 iter 20 value 86.671601 iter 30 value 85.198480 iter 40 value 82.851741 iter 50 value 82.068451 iter 60 value 80.081739 iter 70 value 79.201349 iter 80 value 78.881050 iter 90 value 78.779124 iter 100 value 78.759375 final value 78.759375 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.904349 iter 10 value 94.377796 iter 20 value 92.047366 iter 30 value 90.606611 iter 40 value 89.664286 iter 50 value 89.580020 iter 60 value 89.434312 iter 70 value 85.671976 iter 80 value 82.046831 iter 90 value 80.135872 iter 100 value 79.180936 final value 79.180936 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.965841 iter 10 value 93.661776 iter 20 value 86.529828 iter 30 value 84.803490 iter 40 value 83.135567 iter 50 value 81.781824 iter 60 value 80.616320 iter 70 value 79.841516 iter 80 value 79.813423 iter 90 value 79.739328 iter 100 value 79.710257 final value 79.710257 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.365127 iter 10 value 93.243736 iter 20 value 90.050571 iter 30 value 84.101494 iter 40 value 80.225852 iter 50 value 79.822000 iter 60 value 79.668841 iter 70 value 79.648155 iter 80 value 79.625091 iter 90 value 79.595262 iter 100 value 79.231111 final value 79.231111 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 130.293343 iter 10 value 94.684474 iter 20 value 86.920006 iter 30 value 85.540523 iter 40 value 84.906997 iter 50 value 81.500310 iter 60 value 81.191276 iter 70 value 79.862985 iter 80 value 79.247489 iter 90 value 78.776539 iter 100 value 78.514521 final value 78.514521 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.696783 iter 10 value 94.480186 iter 20 value 91.335953 iter 30 value 89.359741 iter 40 value 83.850463 iter 50 value 83.635502 iter 60 value 83.312486 iter 70 value 80.707030 iter 80 value 79.398951 iter 90 value 79.028711 iter 100 value 78.111019 final value 78.111019 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.963538 iter 10 value 92.819112 iter 20 value 84.032864 iter 30 value 83.238740 iter 40 value 80.531973 iter 50 value 79.178536 iter 60 value 78.714113 iter 70 value 78.510190 iter 80 value 78.394794 iter 90 value 78.251239 iter 100 value 78.130931 final value 78.130931 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.112304 iter 10 value 94.495251 iter 20 value 94.104538 iter 30 value 86.182682 iter 40 value 84.428893 iter 50 value 83.599349 iter 60 value 82.013365 iter 70 value 81.172892 iter 80 value 80.382725 iter 90 value 79.341486 iter 100 value 79.092022 final value 79.092022 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.187487 iter 10 value 94.486033 iter 20 value 94.377855 iter 30 value 90.555069 iter 40 value 82.706310 iter 50 value 82.619450 iter 60 value 82.506959 final value 82.506313 converged Fitting Repeat 2 # weights: 103 initial value 95.476775 iter 10 value 90.560642 final value 90.557087 converged Fitting Repeat 3 # weights: 103 initial value 106.621448 final value 94.485815 converged Fitting Repeat 4 # weights: 103 initial value 99.312090 final value 94.486013 converged Fitting Repeat 5 # weights: 103 initial value 99.785927 final value 94.327705 converged Fitting Repeat 1 # weights: 305 initial value 95.143665 iter 10 value 94.489120 iter 20 value 94.473984 iter 30 value 90.346316 iter 40 value 90.029044 iter 50 value 84.440193 iter 60 value 80.020929 iter 70 value 78.789220 iter 80 value 78.201278 iter 90 value 77.582485 final value 77.552678 converged Fitting Repeat 2 # weights: 305 initial value 96.513898 iter 10 value 94.487941 iter 20 value 94.474361 iter 30 value 94.269398 iter 40 value 91.543257 iter 50 value 90.144392 iter 60 value 88.194635 iter 70 value 86.130531 iter 80 value 86.079426 iter 90 value 85.937747 iter 100 value 85.912040 final value 85.912040 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.154248 iter 10 value 94.179565 iter 20 value 94.138953 iter 30 value 94.137512 iter 40 value 94.119979 iter 50 value 94.095200 iter 50 value 94.095199 iter 50 value 94.095199 final value 94.095199 converged Fitting Repeat 4 # weights: 305 initial value 102.293629 iter 10 value 94.280675 iter 20 value 94.138544 iter 30 value 93.443519 iter 40 value 93.058646 iter 50 value 90.554381 final value 90.486653 converged Fitting Repeat 5 # weights: 305 initial value 105.281647 iter 10 value 94.488811 iter 20 value 94.440903 final value 94.275907 converged Fitting Repeat 1 # weights: 507 initial value 116.642195 iter 10 value 94.492562 iter 20 value 94.437089 iter 30 value 93.046851 iter 40 value 83.682378 iter 50 value 82.890808 iter 60 value 82.627388 iter 70 value 82.616952 iter 80 value 82.616503 iter 90 value 81.184044 iter 100 value 79.044665 final value 79.044665 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 120.179964 iter 10 value 94.283138 iter 20 value 94.236256 iter 30 value 94.234872 iter 40 value 88.194314 iter 50 value 83.549361 iter 60 value 83.179607 iter 70 value 83.179401 iter 80 value 83.176233 iter 90 value 82.258354 iter 100 value 82.204487 final value 82.204487 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 123.249886 iter 10 value 94.487959 iter 20 value 93.779553 iter 30 value 93.727760 iter 40 value 93.658498 iter 50 value 93.353824 iter 60 value 90.241979 iter 70 value 89.130441 iter 80 value 88.783018 final value 88.783012 converged Fitting Repeat 4 # weights: 507 initial value 102.453786 iter 10 value 94.217261 iter 20 value 94.142283 iter 30 value 93.048157 iter 40 value 82.481435 iter 50 value 81.620858 iter 60 value 79.569611 iter 70 value 78.676085 iter 80 value 77.999433 iter 90 value 77.458220 iter 100 value 76.565651 final value 76.565651 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.387520 iter 10 value 94.297876 iter 20 value 94.291867 iter 30 value 94.288753 iter 40 value 94.287425 iter 50 value 89.374342 iter 60 value 83.791659 iter 70 value 83.150349 iter 80 value 82.601673 iter 90 value 82.464871 iter 100 value 82.348133 final value 82.348133 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 135.289512 iter 10 value 116.386048 iter 20 value 108.500324 iter 30 value 107.831365 iter 40 value 106.530686 iter 50 value 105.516627 iter 60 value 104.661616 iter 70 value 103.457814 iter 80 value 101.914954 iter 90 value 101.719846 iter 100 value 101.415284 final value 101.415284 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 130.379450 iter 10 value 117.513494 iter 20 value 112.701267 iter 30 value 108.061364 iter 40 value 106.154802 iter 50 value 105.559125 iter 60 value 104.400491 iter 70 value 103.882150 iter 80 value 103.303603 iter 90 value 102.961610 iter 100 value 102.627327 final value 102.627327 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 150.061243 iter 10 value 116.503731 iter 20 value 111.910384 iter 30 value 107.211095 iter 40 value 102.411726 iter 50 value 102.007718 iter 60 value 101.540441 iter 70 value 101.229723 iter 80 value 100.929424 iter 90 value 100.643313 iter 100 value 100.401397 final value 100.401397 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 137.513129 iter 10 value 117.909825 iter 20 value 111.703366 iter 30 value 107.076991 iter 40 value 104.508163 iter 50 value 104.130567 iter 60 value 103.565191 iter 70 value 102.322685 iter 80 value 101.838427 iter 90 value 101.791432 iter 100 value 101.717772 final value 101.717772 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 142.992218 iter 10 value 118.898982 iter 20 value 117.356459 iter 30 value 109.594884 iter 40 value 104.980032 iter 50 value 104.497037 iter 60 value 103.730573 iter 70 value 102.550688 iter 80 value 101.577433 iter 90 value 101.177162 iter 100 value 100.753070 final value 100.753070 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Mar 18 22:32:00 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 50.553 1.561 130.748
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 53.202 | 1.985 | 55.267 | |
FreqInteractors | 0.235 | 0.013 | 0.247 | |
calculateAAC | 0.039 | 0.007 | 0.045 | |
calculateAutocor | 0.417 | 0.074 | 0.493 | |
calculateCTDC | 0.066 | 0.007 | 0.074 | |
calculateCTDD | 0.361 | 0.034 | 0.398 | |
calculateCTDT | 0.169 | 0.010 | 0.180 | |
calculateCTriad | 0.379 | 0.031 | 0.412 | |
calculateDC | 0.094 | 0.010 | 0.104 | |
calculateF | 0.329 | 0.035 | 0.364 | |
calculateKSAAP | 0.099 | 0.013 | 0.111 | |
calculateQD_Sm | 1.901 | 0.145 | 2.052 | |
calculateTC | 1.659 | 0.131 | 1.802 | |
calculateTC_Sm | 0.370 | 0.029 | 0.399 | |
corr_plot | 51.322 | 2.241 | 53.738 | |
enrichfindP | 0.485 | 0.077 | 9.536 | |
enrichfind_hp | 0.066 | 0.015 | 0.662 | |
enrichplot | 0.372 | 0.007 | 0.380 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.089 | 0.013 | 1.033 | |
getHPI | 0.000 | 0.001 | 0.001 | |
get_negativePPI | 0.001 | 0.000 | 0.001 | |
get_positivePPI | 0.001 | 0.001 | 0.000 | |
impute_missing_data | 0.001 | 0.000 | 0.001 | |
plotPPI | 0.076 | 0.003 | 0.079 | |
pred_ensembel | 15.737 | 0.377 | 14.761 | |
var_imp | 53.821 | 2.136 | 56.130 | |