Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-02-03 12:06 -0500 (Mon, 03 Feb 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4746 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4494 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4517 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4469 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4400 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-01-31 02:57:52 -0500 (Fri, 31 Jan 2025) |
EndedAt: 2025-01-31 03:03:24 -0500 (Fri, 31 Jan 2025) |
EllapsedTime: 332.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck' * using R version 4.4.2 (2024-10-31 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'HPiP/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'HPiP' version '1.12.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'HPiP' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: 'ftrCOOL' * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in 'vignettes' ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 34.08 2.30 36.55 var_imp 34.11 1.72 35.83 corr_plot 33.56 1.72 35.29 pred_ensembel 12.74 0.48 12.21 enrichfindP 0.61 0.10 13.35 * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log' for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library' * installing *source* package 'HPiP' ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 100.451458 final value 93.904720 converged Fitting Repeat 2 # weights: 103 initial value 95.153471 final value 93.455030 converged Fitting Repeat 3 # weights: 103 initial value 96.892118 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 98.680009 iter 10 value 93.582419 final value 93.582418 converged Fitting Repeat 5 # weights: 103 initial value 94.464131 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 103.267873 final value 93.582418 converged Fitting Repeat 2 # weights: 305 initial value 95.128159 final value 93.869755 converged Fitting Repeat 3 # weights: 305 initial value 125.751870 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 125.389600 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 93.923007 final value 93.582418 converged Fitting Repeat 1 # weights: 507 initial value 111.293872 final value 93.366019 converged Fitting Repeat 2 # weights: 507 initial value 97.446634 final value 93.582418 converged Fitting Repeat 3 # weights: 507 initial value 106.242239 iter 10 value 91.720357 iter 20 value 89.957614 iter 30 value 88.822822 final value 88.770405 converged Fitting Repeat 4 # weights: 507 initial value 95.563639 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 5 # weights: 507 initial value 102.911366 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 105.095404 iter 10 value 93.789793 iter 20 value 92.273536 iter 30 value 92.049241 iter 40 value 92.045650 iter 50 value 92.045347 iter 60 value 92.045205 iter 70 value 92.044651 iter 80 value 92.044469 iter 90 value 87.644947 iter 100 value 86.085677 final value 86.085677 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.379651 iter 10 value 93.675406 iter 20 value 93.444187 iter 30 value 93.411254 iter 40 value 90.623202 iter 50 value 88.807600 iter 60 value 88.725133 iter 70 value 84.924137 iter 80 value 83.239588 iter 90 value 82.840454 iter 100 value 82.287373 final value 82.287373 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.104777 iter 10 value 94.006383 iter 20 value 93.543226 iter 30 value 93.417167 iter 40 value 89.988971 iter 50 value 86.674766 iter 60 value 86.357410 iter 70 value 85.890010 iter 80 value 85.456450 iter 90 value 85.236770 iter 100 value 85.233305 final value 85.233305 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 101.166604 iter 10 value 94.137451 iter 20 value 93.825693 iter 30 value 88.722368 iter 40 value 86.781651 iter 50 value 86.350077 iter 60 value 85.182020 iter 70 value 83.190371 iter 80 value 82.436924 iter 90 value 82.236078 iter 100 value 82.222584 final value 82.222584 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.331036 iter 10 value 93.890018 iter 20 value 93.468455 iter 30 value 93.417826 iter 40 value 93.413712 iter 50 value 92.988224 iter 60 value 88.948160 iter 70 value 87.296548 iter 80 value 85.660262 iter 90 value 85.272965 iter 100 value 85.236921 final value 85.236921 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.848684 iter 10 value 94.074832 iter 20 value 92.765823 iter 30 value 89.011842 iter 40 value 87.520319 iter 50 value 86.287444 iter 60 value 86.001124 iter 70 value 85.060154 iter 80 value 83.029517 iter 90 value 82.194188 iter 100 value 81.820098 final value 81.820098 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.462265 iter 10 value 94.328190 iter 20 value 90.603478 iter 30 value 88.373807 iter 40 value 87.071557 iter 50 value 85.634221 iter 60 value 84.650894 iter 70 value 84.306002 iter 80 value 83.418846 iter 90 value 83.078235 iter 100 value 82.405196 final value 82.405196 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 98.317230 iter 10 value 92.757332 iter 20 value 92.185708 iter 30 value 86.072033 iter 40 value 84.995708 iter 50 value 83.925666 iter 60 value 81.947654 iter 70 value 81.322602 iter 80 value 81.020989 iter 90 value 80.796320 iter 100 value 80.748391 final value 80.748391 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 111.587713 iter 10 value 93.722305 iter 20 value 93.490093 iter 30 value 92.361204 iter 40 value 85.980949 iter 50 value 85.315182 iter 60 value 85.041869 iter 70 value 82.988435 iter 80 value 82.025428 iter 90 value 81.401518 iter 100 value 80.835558 final value 80.835558 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 120.801637 iter 10 value 93.996641 iter 20 value 91.259559 iter 30 value 86.762633 iter 40 value 85.108350 iter 50 value 83.676112 iter 60 value 83.306910 iter 70 value 82.485921 iter 80 value 81.853442 iter 90 value 81.392213 iter 100 value 81.353349 final value 81.353349 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.571158 iter 10 value 93.825886 iter 20 value 92.224104 iter 30 value 88.230611 iter 40 value 85.249914 iter 50 value 83.723357 iter 60 value 81.818914 iter 70 value 81.529439 iter 80 value 81.376750 iter 90 value 81.313507 iter 100 value 81.225985 final value 81.225985 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.935165 iter 10 value 93.817380 iter 20 value 87.963672 iter 30 value 84.877303 iter 40 value 83.859424 iter 50 value 83.544984 iter 60 value 83.104240 iter 70 value 82.794183 iter 80 value 81.833930 iter 90 value 81.158090 iter 100 value 81.004354 final value 81.004354 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.687968 iter 10 value 97.343298 iter 20 value 93.460788 iter 30 value 89.596154 iter 40 value 88.146776 iter 50 value 86.756551 iter 60 value 84.764916 iter 70 value 83.590552 iter 80 value 82.847058 iter 90 value 82.064892 iter 100 value 81.993907 final value 81.993907 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.585415 iter 10 value 94.413292 iter 20 value 90.301062 iter 30 value 87.330945 iter 40 value 86.770856 iter 50 value 85.937622 iter 60 value 85.607003 iter 70 value 84.873521 iter 80 value 83.954652 iter 90 value 83.055178 iter 100 value 82.677612 final value 82.677612 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.283791 iter 10 value 93.673069 iter 20 value 93.339658 iter 30 value 87.574946 iter 40 value 84.359649 iter 50 value 83.820169 iter 60 value 82.889447 iter 70 value 81.345173 iter 80 value 80.756305 iter 90 value 80.507591 iter 100 value 80.440054 final value 80.440054 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.398100 final value 94.053400 converged Fitting Repeat 2 # weights: 103 initial value 100.743434 final value 94.054326 converged Fitting Repeat 3 # weights: 103 initial value 97.683728 iter 10 value 93.871335 iter 20 value 93.871092 final value 93.455139 converged Fitting Repeat 4 # weights: 103 initial value 94.444096 final value 94.054711 converged Fitting Repeat 5 # weights: 103 initial value 100.318251 final value 94.054491 converged Fitting Repeat 1 # weights: 305 initial value 101.617302 iter 10 value 94.057938 iter 20 value 93.518624 iter 30 value 91.699265 final value 91.699025 converged Fitting Repeat 2 # weights: 305 initial value 99.467972 iter 10 value 93.587600 iter 20 value 93.582931 iter 30 value 93.053070 iter 40 value 89.951014 iter 50 value 88.136073 iter 60 value 86.684369 iter 70 value 86.477785 iter 80 value 85.557815 iter 90 value 82.088114 iter 100 value 81.629971 final value 81.629971 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 97.679316 iter 10 value 94.057801 iter 20 value 94.030931 iter 30 value 93.410450 iter 30 value 93.410450 iter 30 value 93.410450 final value 93.410450 converged Fitting Repeat 4 # weights: 305 initial value 99.383001 iter 10 value 93.587535 iter 20 value 93.584249 iter 30 value 93.376222 iter 40 value 90.514625 iter 50 value 89.124324 iter 60 value 85.512329 iter 70 value 85.208354 iter 80 value 85.207412 iter 90 value 83.512680 iter 100 value 83.309112 final value 83.309112 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 115.324715 iter 10 value 94.056969 iter 20 value 93.688578 iter 30 value 93.391231 iter 40 value 93.390648 final value 93.390638 converged Fitting Repeat 1 # weights: 507 initial value 111.005696 iter 10 value 93.591866 iter 20 value 93.258189 iter 30 value 93.195445 iter 40 value 93.194680 iter 50 value 93.193978 iter 60 value 93.084423 iter 70 value 85.693072 iter 80 value 83.751298 iter 90 value 83.685014 iter 100 value 83.557175 final value 83.557175 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 95.985512 iter 10 value 93.727893 iter 20 value 93.602334 iter 30 value 93.601594 iter 40 value 93.115266 iter 50 value 92.506678 iter 60 value 92.460669 iter 70 value 92.096129 iter 80 value 85.567359 iter 90 value 84.616120 iter 100 value 84.168918 final value 84.168918 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 123.767829 iter 10 value 93.878132 iter 20 value 93.871078 iter 30 value 91.306242 iter 40 value 90.666305 iter 50 value 90.664284 final value 90.664274 converged Fitting Repeat 4 # weights: 507 initial value 102.234404 iter 10 value 90.177091 iter 20 value 88.006434 iter 30 value 87.826302 final value 87.825110 converged Fitting Repeat 5 # weights: 507 initial value 105.501650 iter 10 value 88.440351 iter 20 value 87.250252 iter 30 value 87.246539 iter 40 value 87.191345 iter 50 value 86.928654 iter 60 value 85.666881 iter 70 value 85.643951 iter 80 value 84.185750 iter 90 value 84.123938 iter 100 value 83.900252 final value 83.900252 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.502368 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.048657 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.802439 final value 93.915746 converged Fitting Repeat 4 # weights: 103 initial value 95.919216 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.808883 final value 93.915746 converged Fitting Repeat 1 # weights: 305 initial value 101.681888 iter 10 value 93.915746 iter 10 value 93.915746 iter 10 value 93.915746 final value 93.915746 converged Fitting Repeat 2 # weights: 305 initial value 99.349944 final value 94.052911 converged Fitting Repeat 3 # weights: 305 initial value 115.684536 iter 10 value 93.915671 iter 20 value 85.321649 final value 85.321374 converged Fitting Repeat 4 # weights: 305 initial value 130.332053 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 99.279160 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 101.117791 iter 10 value 93.141616 final value 93.141612 converged Fitting Repeat 2 # weights: 507 initial value 122.506262 iter 10 value 87.064554 iter 20 value 84.435195 iter 30 value 84.434059 iter 40 value 84.013795 iter 50 value 83.999088 final value 83.999053 converged Fitting Repeat 3 # weights: 507 initial value 106.039775 iter 10 value 89.175750 iter 20 value 87.861766 iter 30 value 87.668510 iter 40 value 85.040148 iter 50 value 83.579415 iter 60 value 83.204596 iter 70 value 83.184905 iter 80 value 83.161528 iter 90 value 83.158991 final value 83.158908 converged Fitting Repeat 4 # weights: 507 initial value 97.853376 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 103.766808 iter 10 value 86.569026 iter 20 value 85.243353 final value 85.239269 converged Fitting Repeat 1 # weights: 103 initial value 102.381545 iter 10 value 93.798904 iter 20 value 83.908844 iter 30 value 83.399820 iter 40 value 83.203014 iter 50 value 83.154292 final value 83.132665 converged Fitting Repeat 2 # weights: 103 initial value 113.659026 iter 10 value 93.987405 iter 20 value 92.758284 iter 30 value 86.055506 iter 40 value 84.670386 iter 50 value 84.112939 iter 60 value 83.261004 iter 70 value 83.147832 iter 80 value 83.133137 final value 83.132665 converged Fitting Repeat 3 # weights: 103 initial value 98.573692 iter 10 value 94.032836 iter 20 value 93.939386 iter 30 value 93.866488 iter 40 value 93.856627 iter 50 value 93.124794 iter 60 value 85.688734 iter 70 value 83.719467 iter 80 value 83.026587 iter 90 value 82.700749 iter 100 value 82.318434 final value 82.318434 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 107.430684 iter 10 value 94.054870 iter 20 value 87.137795 iter 30 value 84.894215 iter 40 value 84.192987 iter 50 value 83.689881 iter 60 value 83.578414 iter 70 value 83.568263 iter 70 value 83.568263 iter 70 value 83.568263 final value 83.568263 converged Fitting Repeat 5 # weights: 103 initial value 102.437108 iter 10 value 94.030575 iter 20 value 86.136402 iter 30 value 83.837359 iter 40 value 83.562756 iter 50 value 83.243132 iter 60 value 83.132704 final value 83.132665 converged Fitting Repeat 1 # weights: 305 initial value 104.554837 iter 10 value 94.281442 iter 20 value 94.155581 iter 30 value 92.655788 iter 40 value 92.154365 iter 50 value 91.973065 iter 60 value 85.840643 iter 70 value 84.857413 iter 80 value 83.501092 iter 90 value 83.019520 iter 100 value 82.654668 final value 82.654668 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.447058 iter 10 value 93.575423 iter 20 value 88.937680 iter 30 value 87.092694 iter 40 value 85.898535 iter 50 value 85.824497 iter 60 value 85.436299 iter 70 value 82.869534 iter 80 value 82.165426 iter 90 value 81.567829 iter 100 value 81.314871 final value 81.314871 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.388251 iter 10 value 89.524913 iter 20 value 86.043954 iter 30 value 85.673828 iter 40 value 84.081224 iter 50 value 82.662035 iter 60 value 81.444043 iter 70 value 80.653376 iter 80 value 80.608176 iter 90 value 80.604874 iter 100 value 80.592094 final value 80.592094 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 108.747151 iter 10 value 94.030875 iter 20 value 86.925729 iter 30 value 85.575649 iter 40 value 83.823973 iter 50 value 82.032222 iter 60 value 81.520166 iter 70 value 81.351462 iter 80 value 81.249445 iter 90 value 81.233683 iter 90 value 81.233683 iter 90 value 81.233683 final value 81.233683 converged Fitting Repeat 5 # weights: 305 initial value 106.408658 iter 10 value 94.085343 iter 20 value 94.006596 iter 30 value 85.269212 iter 40 value 84.465245 iter 50 value 83.972362 iter 60 value 83.820661 iter 70 value 83.373257 iter 80 value 82.116972 iter 90 value 81.806494 iter 100 value 81.475681 final value 81.475681 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 115.748332 iter 10 value 93.789984 iter 20 value 83.879227 iter 30 value 83.550212 iter 40 value 82.931510 iter 50 value 82.218501 iter 60 value 81.451954 iter 70 value 81.242843 iter 80 value 80.892833 iter 90 value 80.685395 iter 100 value 80.605967 final value 80.605967 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.094711 iter 10 value 94.179842 iter 20 value 86.276620 iter 30 value 85.731988 iter 40 value 84.312808 iter 50 value 83.730580 iter 60 value 83.654959 iter 70 value 83.509321 iter 80 value 82.710473 iter 90 value 82.110091 iter 100 value 80.924130 final value 80.924130 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 127.276506 iter 10 value 95.555185 iter 20 value 92.975355 iter 30 value 92.323928 iter 40 value 86.891578 iter 50 value 84.000638 iter 60 value 83.196458 iter 70 value 82.902371 iter 80 value 82.796412 iter 90 value 82.573993 iter 100 value 82.067206 final value 82.067206 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.563728 iter 10 value 93.785230 iter 20 value 86.188112 iter 30 value 85.412256 iter 40 value 83.991909 iter 50 value 83.637885 iter 60 value 83.541563 iter 70 value 83.096518 iter 80 value 82.505987 iter 90 value 81.122771 iter 100 value 80.648734 final value 80.648734 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.738491 iter 10 value 93.734904 iter 20 value 91.020461 iter 30 value 84.384720 iter 40 value 83.111783 iter 50 value 82.176060 iter 60 value 81.482601 iter 70 value 81.139126 iter 80 value 81.093556 iter 90 value 81.030478 iter 100 value 80.669488 final value 80.669488 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.000561 final value 94.054570 converged Fitting Repeat 2 # weights: 103 initial value 100.086680 iter 10 value 94.054333 final value 94.053110 converged Fitting Repeat 3 # weights: 103 initial value 97.494979 final value 94.054684 converged Fitting Repeat 4 # weights: 103 initial value 95.576282 final value 94.055021 converged Fitting Repeat 5 # weights: 103 initial value 117.839263 iter 10 value 94.054698 iter 20 value 94.053006 iter 30 value 93.964256 iter 40 value 93.813712 final value 93.813550 converged Fitting Repeat 1 # weights: 305 initial value 96.325528 iter 10 value 93.611395 iter 20 value 93.491403 iter 30 value 93.454680 iter 40 value 93.453831 iter 50 value 93.452935 iter 60 value 93.452663 iter 70 value 92.201127 iter 80 value 90.586499 iter 90 value 86.793229 iter 100 value 86.545339 final value 86.545339 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.885784 iter 10 value 94.057808 iter 20 value 94.052968 iter 30 value 87.254024 iter 40 value 85.281478 iter 50 value 85.270212 iter 60 value 84.901580 iter 70 value 84.901140 iter 80 value 83.581898 iter 90 value 82.837553 iter 100 value 82.744014 final value 82.744014 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.405326 iter 10 value 93.905772 iter 20 value 93.903245 iter 30 value 93.553236 iter 40 value 93.544492 iter 50 value 93.544237 final value 93.544218 converged Fitting Repeat 4 # weights: 305 initial value 100.367487 iter 10 value 94.057686 final value 94.052926 converged Fitting Repeat 5 # weights: 305 initial value 96.919056 iter 10 value 94.057208 iter 20 value 93.977049 iter 30 value 93.588330 iter 40 value 88.100198 iter 50 value 84.425003 iter 60 value 84.226210 iter 70 value 84.077914 iter 80 value 84.047317 iter 90 value 83.661425 final value 83.658811 converged Fitting Repeat 1 # weights: 507 initial value 104.037202 final value 94.061529 converged Fitting Repeat 2 # weights: 507 initial value 101.679401 iter 10 value 92.227817 iter 20 value 84.455177 iter 30 value 83.963370 iter 40 value 83.672257 final value 83.666109 converged Fitting Repeat 3 # weights: 507 initial value 106.175618 iter 10 value 94.060577 iter 20 value 94.015474 iter 30 value 85.738275 iter 40 value 84.903116 iter 50 value 84.837265 iter 60 value 83.799077 iter 70 value 83.796836 iter 80 value 83.694959 iter 90 value 83.449102 iter 100 value 81.455006 final value 81.455006 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.417015 iter 10 value 93.923928 iter 20 value 93.914041 iter 30 value 93.839691 iter 40 value 93.777138 iter 50 value 85.765740 iter 60 value 85.139475 iter 70 value 84.295560 iter 80 value 82.628996 iter 90 value 82.028302 iter 100 value 81.065937 final value 81.065937 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 97.154945 iter 10 value 94.057290 iter 20 value 93.967474 iter 30 value 86.504671 iter 40 value 84.714921 iter 50 value 84.085016 iter 60 value 83.899724 iter 70 value 83.888474 iter 80 value 83.875388 iter 90 value 83.595123 iter 100 value 81.341982 final value 81.341982 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.679366 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.097888 iter 10 value 93.596024 iter 20 value 92.794474 iter 30 value 92.639973 iter 40 value 92.621366 iter 50 value 92.618258 iter 60 value 92.618217 final value 92.618182 converged Fitting Repeat 3 # weights: 103 initial value 96.162917 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 119.544013 iter 10 value 92.747201 iter 20 value 92.731197 final value 92.731184 converged Fitting Repeat 5 # weights: 103 initial value 96.972081 final value 94.443243 converged Fitting Repeat 1 # weights: 305 initial value 110.614339 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 110.121281 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 97.526269 iter 10 value 93.387365 final value 93.387354 converged Fitting Repeat 4 # weights: 305 initial value 94.945114 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 101.895317 final value 94.443243 converged Fitting Repeat 1 # weights: 507 initial value 105.610462 final value 94.443243 converged Fitting Repeat 2 # weights: 507 initial value 99.736486 iter 10 value 94.443262 final value 94.443243 converged Fitting Repeat 3 # weights: 507 initial value 115.529942 iter 10 value 88.287852 iter 20 value 84.415808 iter 30 value 82.958451 iter 40 value 82.308759 final value 82.308758 converged Fitting Repeat 4 # weights: 507 initial value 123.431995 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 100.750567 final value 94.325945 converged Fitting Repeat 1 # weights: 103 initial value 99.856671 iter 10 value 94.490940 iter 20 value 93.736850 iter 30 value 86.403682 iter 40 value 84.508343 iter 50 value 84.050820 iter 60 value 83.007128 iter 70 value 82.615202 iter 80 value 82.542779 iter 90 value 80.946993 iter 100 value 79.715984 final value 79.715984 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 98.818886 iter 10 value 94.417924 iter 20 value 93.763429 iter 30 value 87.436273 iter 40 value 85.575400 iter 50 value 83.671675 iter 60 value 82.248926 iter 70 value 81.382408 final value 81.377997 converged Fitting Repeat 3 # weights: 103 initial value 103.327256 iter 10 value 94.491322 iter 20 value 94.019763 iter 30 value 93.771402 iter 40 value 92.388496 iter 50 value 85.479092 iter 60 value 83.144811 iter 70 value 82.733209 iter 80 value 82.610001 final value 82.605435 converged Fitting Repeat 4 # weights: 103 initial value 108.142863 iter 10 value 94.486630 iter 20 value 92.885427 iter 30 value 89.465047 iter 40 value 85.129467 iter 50 value 84.151737 iter 60 value 82.812586 iter 70 value 82.485496 iter 80 value 81.102260 iter 90 value 79.818969 iter 100 value 79.450769 final value 79.450769 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.096048 iter 10 value 94.434278 iter 20 value 88.985571 iter 30 value 87.692749 iter 40 value 86.190741 iter 50 value 83.563987 iter 60 value 81.387020 iter 70 value 80.679037 iter 80 value 79.502789 iter 90 value 79.442637 final value 79.441280 converged Fitting Repeat 1 # weights: 305 initial value 105.828933 iter 10 value 94.586013 iter 20 value 92.289766 iter 30 value 91.819895 iter 40 value 90.749754 iter 50 value 85.981763 iter 60 value 81.167250 iter 70 value 79.221661 iter 80 value 78.614670 iter 90 value 78.206856 iter 100 value 77.791448 final value 77.791448 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.748479 iter 10 value 94.320347 iter 20 value 88.386382 iter 30 value 86.605152 iter 40 value 84.379477 iter 50 value 82.504727 iter 60 value 81.258302 iter 70 value 80.280510 iter 80 value 79.504858 iter 90 value 79.454258 iter 100 value 79.322967 final value 79.322967 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.617752 iter 10 value 94.448415 iter 20 value 91.521409 iter 30 value 90.063232 iter 40 value 89.556324 iter 50 value 89.245974 iter 60 value 88.049479 iter 70 value 84.678998 iter 80 value 79.607009 iter 90 value 78.556916 iter 100 value 78.245142 final value 78.245142 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.126474 iter 10 value 94.574766 iter 20 value 89.201121 iter 30 value 84.964499 iter 40 value 84.633145 iter 50 value 84.094987 iter 60 value 83.952554 iter 70 value 83.652700 iter 80 value 81.489394 iter 90 value 79.387080 iter 100 value 79.221956 final value 79.221956 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.408241 iter 10 value 94.171528 iter 20 value 91.885702 iter 30 value 87.191446 iter 40 value 86.344316 iter 50 value 83.956333 iter 60 value 83.322116 iter 70 value 82.289649 iter 80 value 81.030756 iter 90 value 80.020871 iter 100 value 79.464146 final value 79.464146 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.019628 iter 10 value 94.279429 iter 20 value 87.863827 iter 30 value 86.378532 iter 40 value 84.747352 iter 50 value 83.847395 iter 60 value 83.382537 iter 70 value 83.164982 iter 80 value 82.305552 iter 90 value 80.213700 iter 100 value 78.554465 final value 78.554465 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 129.423486 iter 10 value 95.404881 iter 20 value 93.867694 iter 30 value 90.822837 iter 40 value 86.000145 iter 50 value 83.946132 iter 60 value 83.097058 iter 70 value 82.847973 iter 80 value 82.287704 iter 90 value 80.063062 iter 100 value 79.256150 final value 79.256150 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.761391 iter 10 value 94.168231 iter 20 value 84.626747 iter 30 value 83.736776 iter 40 value 82.829555 iter 50 value 79.488394 iter 60 value 78.299017 iter 70 value 78.112915 iter 80 value 78.032421 iter 90 value 77.985527 iter 100 value 77.744617 final value 77.744617 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.666307 iter 10 value 94.473039 iter 20 value 92.289758 iter 30 value 88.860017 iter 40 value 83.861163 iter 50 value 82.528369 iter 60 value 80.309898 iter 70 value 78.121099 iter 80 value 77.989384 iter 90 value 77.891103 iter 100 value 77.755309 final value 77.755309 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.048736 iter 10 value 95.629459 iter 20 value 87.433330 iter 30 value 84.904845 iter 40 value 81.517641 iter 50 value 79.315021 iter 60 value 78.298976 iter 70 value 78.184244 iter 80 value 77.917301 iter 90 value 77.881216 iter 100 value 77.694587 final value 77.694587 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 105.939028 iter 10 value 94.485978 iter 20 value 94.484185 iter 30 value 94.214086 final value 94.214050 converged Fitting Repeat 2 # weights: 103 initial value 100.256180 final value 94.485926 converged Fitting Repeat 3 # weights: 103 initial value 99.173915 final value 94.485724 converged Fitting Repeat 4 # weights: 103 initial value 99.730999 final value 94.486035 converged Fitting Repeat 5 # weights: 103 initial value 102.867164 iter 10 value 94.485891 final value 94.484244 converged Fitting Repeat 1 # weights: 305 initial value 99.919402 iter 10 value 94.490609 iter 20 value 94.321909 iter 30 value 93.390088 iter 40 value 93.389246 iter 50 value 93.388372 iter 60 value 92.752187 final value 92.736078 converged Fitting Repeat 2 # weights: 305 initial value 115.521027 iter 10 value 88.385996 iter 20 value 88.217844 iter 30 value 87.946164 iter 40 value 86.796566 iter 50 value 85.343166 iter 60 value 84.981957 iter 70 value 83.961096 iter 80 value 82.188275 iter 90 value 80.283671 iter 100 value 77.514958 final value 77.514958 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.025047 iter 10 value 94.489062 iter 20 value 94.484382 iter 30 value 94.375578 iter 40 value 93.341461 iter 50 value 93.337511 iter 60 value 93.337306 final value 93.337234 converged Fitting Repeat 4 # weights: 305 initial value 95.233300 iter 10 value 94.482869 iter 20 value 93.075855 iter 30 value 92.500994 iter 40 value 92.496763 iter 50 value 92.496652 final value 92.496447 converged Fitting Repeat 5 # weights: 305 initial value 110.091344 iter 10 value 94.449609 iter 20 value 94.439374 iter 30 value 85.623522 iter 40 value 83.948530 iter 50 value 83.608183 iter 60 value 83.594703 iter 70 value 83.593686 iter 80 value 83.095019 iter 90 value 83.079258 iter 100 value 83.079192 final value 83.079192 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.841575 iter 10 value 93.957055 iter 20 value 93.954507 iter 30 value 92.947157 iter 40 value 92.941754 iter 50 value 92.695633 iter 60 value 92.692949 iter 70 value 92.650100 iter 80 value 92.078207 iter 90 value 90.516054 iter 100 value 89.579305 final value 89.579305 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 102.992489 iter 10 value 94.492281 iter 20 value 94.377835 iter 30 value 86.961950 iter 40 value 86.260461 iter 50 value 85.585244 iter 60 value 82.824253 iter 70 value 81.130296 iter 80 value 77.070991 iter 90 value 76.807410 iter 100 value 76.803598 final value 76.803598 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 125.352120 iter 10 value 94.451497 iter 20 value 93.217949 iter 30 value 93.212135 iter 40 value 91.312205 iter 50 value 83.886786 iter 60 value 81.355917 iter 70 value 81.262087 iter 80 value 81.256285 iter 90 value 80.867626 iter 100 value 80.804511 final value 80.804511 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 112.636728 iter 10 value 94.492906 iter 20 value 94.471253 iter 30 value 85.243627 iter 40 value 83.227101 iter 50 value 82.870696 iter 60 value 79.746437 iter 70 value 79.363778 iter 80 value 79.273821 iter 90 value 79.271377 iter 100 value 79.166403 final value 79.166403 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.308278 iter 10 value 94.491922 iter 20 value 93.404519 iter 30 value 91.936084 iter 40 value 91.506444 iter 50 value 91.505054 iter 60 value 91.502621 iter 70 value 91.438405 iter 80 value 91.226859 iter 90 value 91.054620 iter 100 value 90.368942 final value 90.368942 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.930194 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 100.960536 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.363718 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.512220 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.113222 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.226905 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.983230 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 103.309333 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 98.349859 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 95.107781 final value 94.484214 converged Fitting Repeat 1 # weights: 507 initial value 102.779870 iter 10 value 94.112570 iter 10 value 94.112570 iter 10 value 94.112570 final value 94.112570 converged Fitting Repeat 2 # weights: 507 initial value 106.708796 final value 94.466823 converged Fitting Repeat 3 # weights: 507 initial value 96.549229 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 117.132207 iter 10 value 94.431169 iter 20 value 94.428843 final value 94.428840 converged Fitting Repeat 5 # weights: 507 initial value 114.739772 final value 94.466823 converged Fitting Repeat 1 # weights: 103 initial value 107.541517 iter 10 value 92.732265 iter 20 value 91.103992 iter 30 value 90.992674 iter 40 value 90.089499 iter 50 value 90.064445 final value 90.063989 converged Fitting Repeat 2 # weights: 103 initial value 97.877201 iter 10 value 94.425601 iter 20 value 94.182174 iter 30 value 91.427817 iter 40 value 85.554010 iter 50 value 85.117993 iter 60 value 84.380625 iter 70 value 84.224340 final value 84.224289 converged Fitting Repeat 3 # weights: 103 initial value 106.222816 iter 10 value 94.393761 iter 20 value 89.509989 iter 30 value 87.860348 iter 40 value 87.200242 iter 50 value 82.590819 iter 60 value 82.066441 iter 70 value 81.679699 iter 80 value 81.484383 iter 90 value 81.465405 iter 100 value 81.462544 final value 81.462544 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 112.724626 iter 10 value 94.912703 iter 20 value 94.419813 iter 30 value 88.995678 iter 40 value 84.586620 iter 50 value 83.539566 iter 60 value 83.387465 iter 70 value 82.411340 iter 80 value 81.903600 iter 90 value 81.690449 iter 100 value 81.625194 final value 81.625194 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 114.043212 iter 10 value 94.437212 iter 20 value 91.142928 iter 30 value 87.220967 iter 40 value 86.185713 iter 50 value 85.663242 iter 60 value 85.453443 iter 70 value 85.405116 iter 80 value 85.235239 final value 85.231629 converged Fitting Repeat 1 # weights: 305 initial value 105.842092 iter 10 value 93.958913 iter 20 value 91.071433 iter 30 value 89.281628 iter 40 value 86.771289 iter 50 value 85.912132 iter 60 value 81.184978 iter 70 value 80.372473 iter 80 value 80.308558 iter 90 value 80.227757 iter 100 value 80.153436 final value 80.153436 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 120.297353 iter 10 value 96.376463 iter 20 value 93.780823 iter 30 value 90.780785 iter 40 value 85.904671 iter 50 value 83.593856 iter 60 value 83.039802 iter 70 value 81.428827 iter 80 value 81.073544 iter 90 value 80.970408 iter 100 value 80.874341 final value 80.874341 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.748364 iter 10 value 94.573640 iter 20 value 91.765891 iter 30 value 90.735377 iter 40 value 85.691490 iter 50 value 83.959316 iter 60 value 83.332663 iter 70 value 82.513668 iter 80 value 81.297652 iter 90 value 80.810377 iter 100 value 80.613338 final value 80.613338 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.003769 iter 10 value 94.748724 iter 20 value 94.386692 iter 30 value 89.943794 iter 40 value 88.528357 iter 50 value 88.354019 iter 60 value 85.725067 iter 70 value 84.817569 iter 80 value 84.122418 iter 90 value 83.356555 iter 100 value 82.464521 final value 82.464521 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.525880 iter 10 value 94.500414 iter 20 value 89.049457 iter 30 value 88.697260 iter 40 value 87.966460 iter 50 value 85.260727 iter 60 value 80.987090 iter 70 value 80.573507 iter 80 value 80.515288 iter 90 value 80.420438 iter 100 value 80.229259 final value 80.229259 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.605726 iter 10 value 96.212107 iter 20 value 93.658172 iter 30 value 89.363178 iter 40 value 84.810407 iter 50 value 84.382278 iter 60 value 82.761654 iter 70 value 82.514554 iter 80 value 82.315432 iter 90 value 81.585611 iter 100 value 80.734157 final value 80.734157 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.712578 iter 10 value 94.046208 iter 20 value 87.664198 iter 30 value 85.465564 iter 40 value 84.917556 iter 50 value 84.481302 iter 60 value 84.255440 iter 70 value 83.962491 iter 80 value 82.892710 iter 90 value 82.009592 iter 100 value 81.678999 final value 81.678999 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.810778 iter 10 value 91.148138 iter 20 value 88.200423 iter 30 value 83.720450 iter 40 value 81.367390 iter 50 value 80.494832 iter 60 value 80.263513 iter 70 value 80.023566 iter 80 value 79.978160 iter 90 value 79.970812 iter 100 value 79.937567 final value 79.937567 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.313303 iter 10 value 94.772436 iter 20 value 92.227060 iter 30 value 88.136791 iter 40 value 86.871188 iter 50 value 83.560836 iter 60 value 81.938800 iter 70 value 81.514279 iter 80 value 81.223061 iter 90 value 80.871553 iter 100 value 80.362061 final value 80.362061 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.201115 iter 10 value 94.361523 iter 20 value 92.813342 iter 30 value 87.175939 iter 40 value 85.432046 iter 50 value 84.453551 iter 60 value 84.348961 iter 70 value 82.549812 iter 80 value 81.415963 iter 90 value 81.225240 iter 100 value 80.931727 final value 80.931727 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.956366 final value 94.468413 converged Fitting Repeat 2 # weights: 103 initial value 96.278287 final value 94.090807 converged Fitting Repeat 3 # weights: 103 initial value 98.800366 final value 94.485545 converged Fitting Repeat 4 # weights: 103 initial value 99.669763 final value 94.485982 converged Fitting Repeat 5 # weights: 103 initial value 97.864176 final value 94.486082 converged Fitting Repeat 1 # weights: 305 initial value 98.176264 iter 10 value 94.471729 iter 20 value 94.345467 iter 30 value 86.180017 iter 40 value 85.927006 iter 50 value 85.893713 iter 60 value 83.661685 iter 70 value 81.107858 iter 80 value 81.099220 iter 90 value 81.095981 iter 100 value 80.731593 final value 80.731593 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.383038 iter 10 value 94.488874 iter 20 value 94.394220 iter 30 value 85.403204 iter 40 value 84.760918 iter 50 value 83.366496 iter 60 value 82.518855 iter 70 value 82.012976 iter 80 value 82.012269 iter 90 value 81.997771 iter 100 value 81.995546 final value 81.995546 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 136.303582 iter 10 value 94.471527 iter 20 value 94.426649 iter 30 value 90.712843 iter 40 value 82.957524 iter 50 value 81.441633 iter 60 value 81.293004 iter 70 value 81.291740 iter 80 value 81.276646 iter 90 value 81.252930 iter 100 value 80.989638 final value 80.989638 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.388085 iter 10 value 94.170693 iter 20 value 94.166605 iter 30 value 94.121708 iter 40 value 94.063426 iter 50 value 91.316276 iter 60 value 88.700202 iter 70 value 83.005131 iter 80 value 82.985669 iter 90 value 82.681427 iter 100 value 82.679027 final value 82.679027 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.584602 iter 10 value 94.110574 iter 20 value 94.104009 iter 30 value 94.076851 iter 40 value 94.076463 iter 40 value 94.076463 final value 94.076463 converged Fitting Repeat 1 # weights: 507 initial value 100.666910 iter 10 value 85.203346 iter 20 value 84.490373 iter 30 value 83.635485 iter 40 value 83.508877 iter 50 value 83.421563 iter 60 value 83.418727 iter 70 value 83.418185 iter 80 value 83.247929 iter 90 value 82.979843 iter 100 value 82.963123 final value 82.963123 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.688512 iter 10 value 94.173529 iter 20 value 94.167425 iter 30 value 94.113967 iter 40 value 94.113483 iter 50 value 94.110417 iter 60 value 94.110299 final value 94.110290 converged Fitting Repeat 3 # weights: 507 initial value 111.791961 iter 10 value 94.097457 iter 20 value 94.091381 iter 30 value 94.091010 iter 40 value 93.884035 iter 50 value 90.226302 iter 60 value 89.011252 iter 70 value 88.804609 iter 80 value 84.491540 iter 90 value 82.795043 iter 100 value 82.791443 final value 82.791443 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 97.995515 iter 10 value 94.474450 iter 20 value 94.094199 iter 30 value 94.082323 iter 40 value 94.067447 iter 50 value 94.062830 final value 94.062205 converged Fitting Repeat 5 # weights: 507 initial value 115.279168 iter 10 value 94.493227 iter 20 value 92.900683 iter 30 value 86.591875 iter 40 value 84.388040 iter 50 value 83.644988 iter 60 value 82.256639 iter 70 value 82.240519 iter 80 value 82.230906 iter 90 value 82.225559 iter 100 value 81.430216 final value 81.430216 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.671577 final value 94.484210 converged Fitting Repeat 2 # weights: 103 initial value 97.543059 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 94.627924 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.497543 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 103.613942 final value 94.484210 converged Fitting Repeat 1 # weights: 305 initial value 96.569450 final value 94.443182 converged Fitting Repeat 2 # weights: 305 initial value 103.622623 final value 94.443243 converged Fitting Repeat 3 # weights: 305 initial value 110.270542 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 130.045471 final value 94.443243 converged Fitting Repeat 5 # weights: 305 initial value 104.852838 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 101.009939 iter 10 value 94.400026 final value 94.400000 converged Fitting Repeat 2 # weights: 507 initial value 101.836939 final value 94.443243 converged Fitting Repeat 3 # weights: 507 initial value 105.395984 final value 94.443243 converged Fitting Repeat 4 # weights: 507 initial value 98.348232 final value 93.634731 converged Fitting Repeat 5 # weights: 507 initial value 98.265923 iter 10 value 94.129891 final value 94.129874 converged Fitting Repeat 1 # weights: 103 initial value 106.839109 iter 10 value 94.289961 iter 20 value 88.268873 iter 30 value 87.374777 iter 40 value 87.308365 iter 50 value 85.159789 iter 60 value 84.046675 iter 70 value 83.971169 iter 80 value 83.948010 iter 80 value 83.948010 final value 83.948010 converged Fitting Repeat 2 # weights: 103 initial value 108.590887 iter 10 value 94.546013 iter 20 value 94.486872 iter 30 value 92.572583 iter 40 value 91.791084 iter 50 value 91.687662 iter 60 value 90.960897 iter 70 value 88.356801 iter 80 value 84.765049 iter 90 value 84.268956 iter 100 value 84.048584 final value 84.048584 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 102.446821 iter 10 value 94.405548 iter 20 value 93.891065 iter 30 value 91.638111 iter 40 value 86.167665 iter 50 value 85.413994 iter 60 value 84.513274 iter 70 value 84.096725 iter 80 value 83.955564 iter 90 value 83.941204 final value 83.941192 converged Fitting Repeat 4 # weights: 103 initial value 98.544834 iter 10 value 94.723776 iter 20 value 91.780344 iter 30 value 88.561550 iter 40 value 85.082519 iter 50 value 84.790838 iter 60 value 83.674943 iter 70 value 83.500173 iter 80 value 83.355074 iter 90 value 83.336980 iter 100 value 83.334183 final value 83.334183 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.029078 iter 10 value 94.489650 iter 20 value 93.834066 iter 30 value 86.207749 iter 40 value 84.803473 iter 50 value 84.153564 iter 60 value 83.957973 final value 83.941192 converged Fitting Repeat 1 # weights: 305 initial value 105.598816 iter 10 value 94.481344 iter 20 value 93.504200 iter 30 value 89.646797 iter 40 value 87.430587 iter 50 value 85.292636 iter 60 value 82.994602 iter 70 value 82.703026 iter 80 value 82.107958 iter 90 value 81.884152 iter 100 value 81.807226 final value 81.807226 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.012260 iter 10 value 94.176230 iter 20 value 85.515925 iter 30 value 84.640631 iter 40 value 84.458634 iter 50 value 84.302502 iter 60 value 83.451484 iter 70 value 82.868618 iter 80 value 82.655463 iter 90 value 82.468680 iter 100 value 82.398922 final value 82.398922 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.674171 iter 10 value 93.011739 iter 20 value 92.508994 iter 30 value 91.337057 iter 40 value 91.055115 iter 50 value 84.082345 iter 60 value 83.019139 iter 70 value 82.181372 iter 80 value 81.786747 iter 90 value 81.551383 iter 100 value 81.207335 final value 81.207335 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.706582 iter 10 value 94.505030 iter 20 value 85.451129 iter 30 value 84.646947 iter 40 value 82.921827 iter 50 value 82.688758 iter 60 value 82.376491 iter 70 value 81.614715 iter 80 value 81.448323 iter 90 value 81.370211 iter 100 value 81.348002 final value 81.348002 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.885500 iter 10 value 92.637625 iter 20 value 91.754057 iter 30 value 90.128689 iter 40 value 87.779053 iter 50 value 86.382340 iter 60 value 85.026782 iter 70 value 83.931070 iter 80 value 83.554915 iter 90 value 83.444696 iter 100 value 82.894025 final value 82.894025 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.997633 iter 10 value 95.435622 iter 20 value 93.876324 iter 30 value 85.262900 iter 40 value 84.706311 iter 50 value 84.570644 iter 60 value 83.987452 iter 70 value 83.470871 iter 80 value 82.744537 iter 90 value 82.560576 iter 100 value 82.467800 final value 82.467800 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.826227 iter 10 value 94.528054 iter 20 value 91.128682 iter 30 value 89.428919 iter 40 value 84.170993 iter 50 value 82.885753 iter 60 value 81.984331 iter 70 value 81.161070 iter 80 value 81.038643 iter 90 value 80.984397 iter 100 value 80.855046 final value 80.855046 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.125121 iter 10 value 95.233797 iter 20 value 90.573354 iter 30 value 85.707263 iter 40 value 85.311566 iter 50 value 85.090866 iter 60 value 83.405337 iter 70 value 82.815695 iter 80 value 82.790096 iter 90 value 82.751831 iter 100 value 82.363085 final value 82.363085 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 124.071441 iter 10 value 93.934674 iter 20 value 85.524057 iter 30 value 84.376419 iter 40 value 84.148300 iter 50 value 83.235833 iter 60 value 82.722552 iter 70 value 82.579079 iter 80 value 82.517176 iter 90 value 82.440275 iter 100 value 82.312671 final value 82.312671 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.164396 iter 10 value 94.378205 iter 20 value 88.675562 iter 30 value 88.047329 iter 40 value 87.718425 iter 50 value 83.113655 iter 60 value 82.338682 iter 70 value 81.748184 iter 80 value 81.433779 iter 90 value 81.284174 iter 100 value 81.222758 final value 81.222758 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.654673 iter 10 value 94.486045 iter 20 value 94.480781 iter 30 value 92.338932 iter 40 value 92.295652 iter 50 value 92.295282 final value 92.295123 converged Fitting Repeat 2 # weights: 103 initial value 94.660774 iter 10 value 94.486032 final value 94.484218 converged Fitting Repeat 3 # weights: 103 initial value 104.512032 final value 94.485789 converged Fitting Repeat 4 # weights: 103 initial value 106.722170 final value 94.485957 converged Fitting Repeat 5 # weights: 103 initial value 98.095880 final value 94.485883 converged Fitting Repeat 1 # weights: 305 initial value 102.145732 iter 10 value 94.447896 iter 20 value 94.391586 iter 30 value 89.188760 iter 40 value 84.224381 iter 50 value 80.768780 iter 60 value 80.323482 iter 70 value 80.312907 iter 80 value 80.309305 iter 90 value 80.308124 iter 100 value 80.307936 final value 80.307936 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.507561 iter 10 value 94.489274 iter 20 value 94.484188 iter 30 value 90.125385 iter 40 value 89.844300 iter 50 value 89.122841 iter 60 value 88.922050 iter 70 value 87.063598 iter 80 value 86.506684 iter 90 value 85.361379 iter 100 value 85.331671 final value 85.331671 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 95.462200 iter 10 value 89.677712 iter 20 value 86.510775 iter 30 value 86.506679 iter 40 value 86.504693 iter 50 value 85.821801 iter 60 value 85.316642 iter 70 value 84.843803 iter 80 value 82.068048 iter 90 value 81.359241 iter 100 value 80.726680 final value 80.726680 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 97.760581 iter 10 value 94.488965 iter 20 value 94.325088 iter 30 value 84.957997 iter 40 value 84.942021 final value 84.941741 converged Fitting Repeat 5 # weights: 305 initial value 99.272263 iter 10 value 94.488892 iter 20 value 94.319065 iter 30 value 91.514793 iter 40 value 91.504978 iter 50 value 91.504760 iter 60 value 91.456644 iter 70 value 91.453568 iter 80 value 88.731691 iter 90 value 84.940088 iter 100 value 84.053504 final value 84.053504 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 124.921193 iter 10 value 94.492975 iter 20 value 94.027040 iter 30 value 85.485483 iter 40 value 84.005200 iter 50 value 83.542755 iter 60 value 83.318809 iter 70 value 81.435818 iter 80 value 80.463377 iter 90 value 80.326376 iter 100 value 80.305121 final value 80.305121 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 101.342382 iter 10 value 94.451692 iter 20 value 94.418582 iter 30 value 93.266725 iter 40 value 87.582612 iter 50 value 87.205249 iter 60 value 87.202253 iter 70 value 85.744607 iter 80 value 85.387247 iter 90 value 85.386413 iter 100 value 84.665490 final value 84.665490 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.672975 iter 10 value 94.451854 iter 20 value 94.444859 iter 30 value 89.264051 iter 40 value 86.815077 iter 50 value 85.946030 iter 60 value 84.502819 iter 70 value 84.492512 iter 80 value 83.495424 iter 90 value 83.011390 iter 100 value 82.962460 final value 82.962460 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.557375 iter 10 value 90.938474 iter 20 value 89.715030 iter 30 value 89.244178 iter 40 value 89.237917 iter 50 value 89.155937 iter 60 value 89.151635 iter 70 value 89.149471 iter 80 value 88.027390 iter 90 value 87.856076 iter 100 value 87.601560 final value 87.601560 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.931267 iter 10 value 94.490427 iter 20 value 94.326150 iter 30 value 84.340307 final value 84.331917 converged Fitting Repeat 1 # weights: 305 initial value 117.946462 iter 10 value 117.892827 iter 20 value 115.038993 iter 30 value 114.406463 iter 40 value 113.951023 iter 50 value 112.954365 iter 60 value 103.122311 iter 70 value 100.844715 iter 80 value 100.009138 iter 90 value 99.858416 iter 100 value 99.755419 final value 99.755419 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 123.052085 iter 10 value 117.763515 iter 20 value 117.758914 final value 117.758836 converged Fitting Repeat 3 # weights: 305 initial value 137.375419 iter 10 value 117.033735 iter 20 value 116.908126 iter 30 value 108.805010 iter 40 value 104.348263 iter 50 value 104.280618 final value 104.279952 converged Fitting Repeat 4 # weights: 305 initial value 123.829085 iter 10 value 117.894226 iter 20 value 117.416317 iter 30 value 108.636440 iter 40 value 105.143341 iter 50 value 101.896244 iter 60 value 101.510804 iter 70 value 100.056843 iter 80 value 99.744896 iter 90 value 99.499499 iter 100 value 99.472342 final value 99.472342 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 120.355801 iter 10 value 117.210893 iter 20 value 116.931132 iter 30 value 113.736172 iter 40 value 108.492704 final value 108.424964 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Jan 31 03:03:09 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 39.43 1.39 75.29
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 34.08 | 2.30 | 36.55 | |
FreqInteractors | 0.22 | 0.05 | 0.28 | |
calculateAAC | 0.07 | 0.00 | 0.07 | |
calculateAutocor | 0.42 | 0.09 | 0.51 | |
calculateCTDC | 0.08 | 0.01 | 0.10 | |
calculateCTDD | 0.89 | 0.04 | 0.92 | |
calculateCTDT | 0.32 | 0.01 | 0.34 | |
calculateCTriad | 0.44 | 0.00 | 0.44 | |
calculateDC | 0.16 | 0.00 | 0.15 | |
calculateF | 0.45 | 0.00 | 0.46 | |
calculateKSAAP | 0.11 | 0.00 | 0.11 | |
calculateQD_Sm | 2.52 | 0.28 | 2.79 | |
calculateTC | 1.86 | 0.24 | 2.10 | |
calculateTC_Sm | 0.31 | 0.04 | 0.36 | |
corr_plot | 33.56 | 1.72 | 35.29 | |
enrichfindP | 0.61 | 0.10 | 13.35 | |
enrichfind_hp | 0.08 | 0.01 | 1.15 | |
enrichplot | 0.45 | 0.02 | 0.47 | |
filter_missing_values | 0 | 0 | 0 | |
getFASTA | 0.00 | 0.03 | 2.31 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0.01 | 0.00 | 0.02 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0 | 0 | 0 | |
plotPPI | 0.11 | 0.00 | 0.11 | |
pred_ensembel | 12.74 | 0.48 | 12.21 | |
var_imp | 34.11 | 1.72 | 35.83 | |