Back to Multiple platform build/check report for BioC 3.20:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-02-03 12:06 -0500 (Mon, 03 Feb 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.1 LTS)x86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4746
palomino8Windows Server 2022 Datacenterx644.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" 4494
merida1macOS 12.7.5 Montereyx86_644.4.2 (2024-10-31) -- "Pile of Leaves" 4517
kjohnson1macOS 13.6.6 Venturaarm644.4.2 (2024-10-31) -- "Pile of Leaves" 4469
taishanLinux (openEuler 24.03 LTS)aarch644.4.2 (2024-10-31) -- "Pile of Leaves" 4400
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 979/2289HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.12.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-01-30 13:00 -0500 (Thu, 30 Jan 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: RELEASE_3_20
git_last_commit: ce9e305
git_last_commit_date: 2024-10-29 11:04:11 -0500 (Tue, 29 Oct 2024)
nebbiolo2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino8Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for HPiP on palomino8

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.12.0
Command: F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz
StartedAt: 2025-01-31 02:57:52 -0500 (Fri, 31 Jan 2025)
EndedAt: 2025-01-31 03:03:24 -0500 (Fri, 31 Jan 2025)
EllapsedTime: 332.1 seconds
RetCode: 0
Status:   OK  
CheckDir: HPiP.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=F:\biocbuild\bbs-3.20-bioc\R\library --no-vignettes --timings HPiP_1.12.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory 'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck'
* using R version 4.4.2 (2024-10-31 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
    gcc.exe (GCC) 13.3.0
    GNU Fortran (GCC) 13.3.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.12.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
               user system elapsed
FSmethod      34.08   2.30   36.55
var_imp       34.11   1.72   35.83
corr_plot     33.56   1.72   35.29
pred_ensembel 12.74   0.48   12.21
enrichfindP    0.61   0.10   13.35
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
  Running 'runTests.R'
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 3 NOTEs
See
  'F:/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log'
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   F:\biocbuild\bbs-3.20-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library 'F:/biocbuild/bbs-3.20-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R version 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 100.451458 
final  value 93.904720 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.153471 
final  value 93.455030 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.892118 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.680009 
iter  10 value 93.582419
final  value 93.582418 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.464131 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.267873 
final  value 93.582418 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.128159 
final  value 93.869755 
converged
Fitting Repeat 3 

# weights:  305
initial  value 125.751870 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 125.389600 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 93.923007 
final  value 93.582418 
converged
Fitting Repeat 1 

# weights:  507
initial  value 111.293872 
final  value 93.366019 
converged
Fitting Repeat 2 

# weights:  507
initial  value 97.446634 
final  value 93.582418 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.242239 
iter  10 value 91.720357
iter  20 value 89.957614
iter  30 value 88.822822
final  value 88.770405 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.563639 
iter  10 value 93.582418
iter  10 value 93.582418
iter  10 value 93.582418
final  value 93.582418 
converged
Fitting Repeat 5 

# weights:  507
initial  value 102.911366 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 105.095404 
iter  10 value 93.789793
iter  20 value 92.273536
iter  30 value 92.049241
iter  40 value 92.045650
iter  50 value 92.045347
iter  60 value 92.045205
iter  70 value 92.044651
iter  80 value 92.044469
iter  90 value 87.644947
iter 100 value 86.085677
final  value 86.085677 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 100.379651 
iter  10 value 93.675406
iter  20 value 93.444187
iter  30 value 93.411254
iter  40 value 90.623202
iter  50 value 88.807600
iter  60 value 88.725133
iter  70 value 84.924137
iter  80 value 83.239588
iter  90 value 82.840454
iter 100 value 82.287373
final  value 82.287373 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.104777 
iter  10 value 94.006383
iter  20 value 93.543226
iter  30 value 93.417167
iter  40 value 89.988971
iter  50 value 86.674766
iter  60 value 86.357410
iter  70 value 85.890010
iter  80 value 85.456450
iter  90 value 85.236770
iter 100 value 85.233305
final  value 85.233305 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 101.166604 
iter  10 value 94.137451
iter  20 value 93.825693
iter  30 value 88.722368
iter  40 value 86.781651
iter  50 value 86.350077
iter  60 value 85.182020
iter  70 value 83.190371
iter  80 value 82.436924
iter  90 value 82.236078
iter 100 value 82.222584
final  value 82.222584 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 99.331036 
iter  10 value 93.890018
iter  20 value 93.468455
iter  30 value 93.417826
iter  40 value 93.413712
iter  50 value 92.988224
iter  60 value 88.948160
iter  70 value 87.296548
iter  80 value 85.660262
iter  90 value 85.272965
iter 100 value 85.236921
final  value 85.236921 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 102.848684 
iter  10 value 94.074832
iter  20 value 92.765823
iter  30 value 89.011842
iter  40 value 87.520319
iter  50 value 86.287444
iter  60 value 86.001124
iter  70 value 85.060154
iter  80 value 83.029517
iter  90 value 82.194188
iter 100 value 81.820098
final  value 81.820098 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.462265 
iter  10 value 94.328190
iter  20 value 90.603478
iter  30 value 88.373807
iter  40 value 87.071557
iter  50 value 85.634221
iter  60 value 84.650894
iter  70 value 84.306002
iter  80 value 83.418846
iter  90 value 83.078235
iter 100 value 82.405196
final  value 82.405196 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 98.317230 
iter  10 value 92.757332
iter  20 value 92.185708
iter  30 value 86.072033
iter  40 value 84.995708
iter  50 value 83.925666
iter  60 value 81.947654
iter  70 value 81.322602
iter  80 value 81.020989
iter  90 value 80.796320
iter 100 value 80.748391
final  value 80.748391 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 111.587713 
iter  10 value 93.722305
iter  20 value 93.490093
iter  30 value 92.361204
iter  40 value 85.980949
iter  50 value 85.315182
iter  60 value 85.041869
iter  70 value 82.988435
iter  80 value 82.025428
iter  90 value 81.401518
iter 100 value 80.835558
final  value 80.835558 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 120.801637 
iter  10 value 93.996641
iter  20 value 91.259559
iter  30 value 86.762633
iter  40 value 85.108350
iter  50 value 83.676112
iter  60 value 83.306910
iter  70 value 82.485921
iter  80 value 81.853442
iter  90 value 81.392213
iter 100 value 81.353349
final  value 81.353349 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 122.571158 
iter  10 value 93.825886
iter  20 value 92.224104
iter  30 value 88.230611
iter  40 value 85.249914
iter  50 value 83.723357
iter  60 value 81.818914
iter  70 value 81.529439
iter  80 value 81.376750
iter  90 value 81.313507
iter 100 value 81.225985
final  value 81.225985 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.935165 
iter  10 value 93.817380
iter  20 value 87.963672
iter  30 value 84.877303
iter  40 value 83.859424
iter  50 value 83.544984
iter  60 value 83.104240
iter  70 value 82.794183
iter  80 value 81.833930
iter  90 value 81.158090
iter 100 value 81.004354
final  value 81.004354 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.687968 
iter  10 value 97.343298
iter  20 value 93.460788
iter  30 value 89.596154
iter  40 value 88.146776
iter  50 value 86.756551
iter  60 value 84.764916
iter  70 value 83.590552
iter  80 value 82.847058
iter  90 value 82.064892
iter 100 value 81.993907
final  value 81.993907 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 104.585415 
iter  10 value 94.413292
iter  20 value 90.301062
iter  30 value 87.330945
iter  40 value 86.770856
iter  50 value 85.937622
iter  60 value 85.607003
iter  70 value 84.873521
iter  80 value 83.954652
iter  90 value 83.055178
iter 100 value 82.677612
final  value 82.677612 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.283791 
iter  10 value 93.673069
iter  20 value 93.339658
iter  30 value 87.574946
iter  40 value 84.359649
iter  50 value 83.820169
iter  60 value 82.889447
iter  70 value 81.345173
iter  80 value 80.756305
iter  90 value 80.507591
iter 100 value 80.440054
final  value 80.440054 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.398100 
final  value 94.053400 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.743434 
final  value 94.054326 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.683728 
iter  10 value 93.871335
iter  20 value 93.871092
final  value 93.455139 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.444096 
final  value 94.054711 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.318251 
final  value 94.054491 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.617302 
iter  10 value 94.057938
iter  20 value 93.518624
iter  30 value 91.699265
final  value 91.699025 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.467972 
iter  10 value 93.587600
iter  20 value 93.582931
iter  30 value 93.053070
iter  40 value 89.951014
iter  50 value 88.136073
iter  60 value 86.684369
iter  70 value 86.477785
iter  80 value 85.557815
iter  90 value 82.088114
iter 100 value 81.629971
final  value 81.629971 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 97.679316 
iter  10 value 94.057801
iter  20 value 94.030931
iter  30 value 93.410450
iter  30 value 93.410450
iter  30 value 93.410450
final  value 93.410450 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.383001 
iter  10 value 93.587535
iter  20 value 93.584249
iter  30 value 93.376222
iter  40 value 90.514625
iter  50 value 89.124324
iter  60 value 85.512329
iter  70 value 85.208354
iter  80 value 85.207412
iter  90 value 83.512680
iter 100 value 83.309112
final  value 83.309112 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 115.324715 
iter  10 value 94.056969
iter  20 value 93.688578
iter  30 value 93.391231
iter  40 value 93.390648
final  value 93.390638 
converged
Fitting Repeat 1 

# weights:  507
initial  value 111.005696 
iter  10 value 93.591866
iter  20 value 93.258189
iter  30 value 93.195445
iter  40 value 93.194680
iter  50 value 93.193978
iter  60 value 93.084423
iter  70 value 85.693072
iter  80 value 83.751298
iter  90 value 83.685014
iter 100 value 83.557175
final  value 83.557175 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 95.985512 
iter  10 value 93.727893
iter  20 value 93.602334
iter  30 value 93.601594
iter  40 value 93.115266
iter  50 value 92.506678
iter  60 value 92.460669
iter  70 value 92.096129
iter  80 value 85.567359
iter  90 value 84.616120
iter 100 value 84.168918
final  value 84.168918 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 123.767829 
iter  10 value 93.878132
iter  20 value 93.871078
iter  30 value 91.306242
iter  40 value 90.666305
iter  50 value 90.664284
final  value 90.664274 
converged
Fitting Repeat 4 

# weights:  507
initial  value 102.234404 
iter  10 value 90.177091
iter  20 value 88.006434
iter  30 value 87.826302
final  value 87.825110 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.501650 
iter  10 value 88.440351
iter  20 value 87.250252
iter  30 value 87.246539
iter  40 value 87.191345
iter  50 value 86.928654
iter  60 value 85.666881
iter  70 value 85.643951
iter  80 value 84.185750
iter  90 value 84.123938
iter 100 value 83.900252
final  value 83.900252 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 103.502368 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.048657 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.802439 
final  value 93.915746 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.919216 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.808883 
final  value 93.915746 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.681888 
iter  10 value 93.915746
iter  10 value 93.915746
iter  10 value 93.915746
final  value 93.915746 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.349944 
final  value 94.052911 
converged
Fitting Repeat 3 

# weights:  305
initial  value 115.684536 
iter  10 value 93.915671
iter  20 value 85.321649
final  value 85.321374 
converged
Fitting Repeat 4 

# weights:  305
initial  value 130.332053 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.279160 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.117791 
iter  10 value 93.141616
final  value 93.141612 
converged
Fitting Repeat 2 

# weights:  507
initial  value 122.506262 
iter  10 value 87.064554
iter  20 value 84.435195
iter  30 value 84.434059
iter  40 value 84.013795
iter  50 value 83.999088
final  value 83.999053 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.039775 
iter  10 value 89.175750
iter  20 value 87.861766
iter  30 value 87.668510
iter  40 value 85.040148
iter  50 value 83.579415
iter  60 value 83.204596
iter  70 value 83.184905
iter  80 value 83.161528
iter  90 value 83.158991
final  value 83.158908 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.853376 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 103.766808 
iter  10 value 86.569026
iter  20 value 85.243353
final  value 85.239269 
converged
Fitting Repeat 1 

# weights:  103
initial  value 102.381545 
iter  10 value 93.798904
iter  20 value 83.908844
iter  30 value 83.399820
iter  40 value 83.203014
iter  50 value 83.154292
final  value 83.132665 
converged
Fitting Repeat 2 

# weights:  103
initial  value 113.659026 
iter  10 value 93.987405
iter  20 value 92.758284
iter  30 value 86.055506
iter  40 value 84.670386
iter  50 value 84.112939
iter  60 value 83.261004
iter  70 value 83.147832
iter  80 value 83.133137
final  value 83.132665 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.573692 
iter  10 value 94.032836
iter  20 value 93.939386
iter  30 value 93.866488
iter  40 value 93.856627
iter  50 value 93.124794
iter  60 value 85.688734
iter  70 value 83.719467
iter  80 value 83.026587
iter  90 value 82.700749
iter 100 value 82.318434
final  value 82.318434 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 107.430684 
iter  10 value 94.054870
iter  20 value 87.137795
iter  30 value 84.894215
iter  40 value 84.192987
iter  50 value 83.689881
iter  60 value 83.578414
iter  70 value 83.568263
iter  70 value 83.568263
iter  70 value 83.568263
final  value 83.568263 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.437108 
iter  10 value 94.030575
iter  20 value 86.136402
iter  30 value 83.837359
iter  40 value 83.562756
iter  50 value 83.243132
iter  60 value 83.132704
final  value 83.132665 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.554837 
iter  10 value 94.281442
iter  20 value 94.155581
iter  30 value 92.655788
iter  40 value 92.154365
iter  50 value 91.973065
iter  60 value 85.840643
iter  70 value 84.857413
iter  80 value 83.501092
iter  90 value 83.019520
iter 100 value 82.654668
final  value 82.654668 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.447058 
iter  10 value 93.575423
iter  20 value 88.937680
iter  30 value 87.092694
iter  40 value 85.898535
iter  50 value 85.824497
iter  60 value 85.436299
iter  70 value 82.869534
iter  80 value 82.165426
iter  90 value 81.567829
iter 100 value 81.314871
final  value 81.314871 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 105.388251 
iter  10 value 89.524913
iter  20 value 86.043954
iter  30 value 85.673828
iter  40 value 84.081224
iter  50 value 82.662035
iter  60 value 81.444043
iter  70 value 80.653376
iter  80 value 80.608176
iter  90 value 80.604874
iter 100 value 80.592094
final  value 80.592094 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.747151 
iter  10 value 94.030875
iter  20 value 86.925729
iter  30 value 85.575649
iter  40 value 83.823973
iter  50 value 82.032222
iter  60 value 81.520166
iter  70 value 81.351462
iter  80 value 81.249445
iter  90 value 81.233683
iter  90 value 81.233683
iter  90 value 81.233683
final  value 81.233683 
converged
Fitting Repeat 5 

# weights:  305
initial  value 106.408658 
iter  10 value 94.085343
iter  20 value 94.006596
iter  30 value 85.269212
iter  40 value 84.465245
iter  50 value 83.972362
iter  60 value 83.820661
iter  70 value 83.373257
iter  80 value 82.116972
iter  90 value 81.806494
iter 100 value 81.475681
final  value 81.475681 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 115.748332 
iter  10 value 93.789984
iter  20 value 83.879227
iter  30 value 83.550212
iter  40 value 82.931510
iter  50 value 82.218501
iter  60 value 81.451954
iter  70 value 81.242843
iter  80 value 80.892833
iter  90 value 80.685395
iter 100 value 80.605967
final  value 80.605967 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 108.094711 
iter  10 value 94.179842
iter  20 value 86.276620
iter  30 value 85.731988
iter  40 value 84.312808
iter  50 value 83.730580
iter  60 value 83.654959
iter  70 value 83.509321
iter  80 value 82.710473
iter  90 value 82.110091
iter 100 value 80.924130
final  value 80.924130 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 127.276506 
iter  10 value 95.555185
iter  20 value 92.975355
iter  30 value 92.323928
iter  40 value 86.891578
iter  50 value 84.000638
iter  60 value 83.196458
iter  70 value 82.902371
iter  80 value 82.796412
iter  90 value 82.573993
iter 100 value 82.067206
final  value 82.067206 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.563728 
iter  10 value 93.785230
iter  20 value 86.188112
iter  30 value 85.412256
iter  40 value 83.991909
iter  50 value 83.637885
iter  60 value 83.541563
iter  70 value 83.096518
iter  80 value 82.505987
iter  90 value 81.122771
iter 100 value 80.648734
final  value 80.648734 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.738491 
iter  10 value 93.734904
iter  20 value 91.020461
iter  30 value 84.384720
iter  40 value 83.111783
iter  50 value 82.176060
iter  60 value 81.482601
iter  70 value 81.139126
iter  80 value 81.093556
iter  90 value 81.030478
iter 100 value 80.669488
final  value 80.669488 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 102.000561 
final  value 94.054570 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.086680 
iter  10 value 94.054333
final  value 94.053110 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.494979 
final  value 94.054684 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.576282 
final  value 94.055021 
converged
Fitting Repeat 5 

# weights:  103
initial  value 117.839263 
iter  10 value 94.054698
iter  20 value 94.053006
iter  30 value 93.964256
iter  40 value 93.813712
final  value 93.813550 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.325528 
iter  10 value 93.611395
iter  20 value 93.491403
iter  30 value 93.454680
iter  40 value 93.453831
iter  50 value 93.452935
iter  60 value 93.452663
iter  70 value 92.201127
iter  80 value 90.586499
iter  90 value 86.793229
iter 100 value 86.545339
final  value 86.545339 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.885784 
iter  10 value 94.057808
iter  20 value 94.052968
iter  30 value 87.254024
iter  40 value 85.281478
iter  50 value 85.270212
iter  60 value 84.901580
iter  70 value 84.901140
iter  80 value 83.581898
iter  90 value 82.837553
iter 100 value 82.744014
final  value 82.744014 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 114.405326 
iter  10 value 93.905772
iter  20 value 93.903245
iter  30 value 93.553236
iter  40 value 93.544492
iter  50 value 93.544237
final  value 93.544218 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.367487 
iter  10 value 94.057686
final  value 94.052926 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.919056 
iter  10 value 94.057208
iter  20 value 93.977049
iter  30 value 93.588330
iter  40 value 88.100198
iter  50 value 84.425003
iter  60 value 84.226210
iter  70 value 84.077914
iter  80 value 84.047317
iter  90 value 83.661425
final  value 83.658811 
converged
Fitting Repeat 1 

# weights:  507
initial  value 104.037202 
final  value 94.061529 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.679401 
iter  10 value 92.227817
iter  20 value 84.455177
iter  30 value 83.963370
iter  40 value 83.672257
final  value 83.666109 
converged
Fitting Repeat 3 

# weights:  507
initial  value 106.175618 
iter  10 value 94.060577
iter  20 value 94.015474
iter  30 value 85.738275
iter  40 value 84.903116
iter  50 value 84.837265
iter  60 value 83.799077
iter  70 value 83.796836
iter  80 value 83.694959
iter  90 value 83.449102
iter 100 value 81.455006
final  value 81.455006 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 109.417015 
iter  10 value 93.923928
iter  20 value 93.914041
iter  30 value 93.839691
iter  40 value 93.777138
iter  50 value 85.765740
iter  60 value 85.139475
iter  70 value 84.295560
iter  80 value 82.628996
iter  90 value 82.028302
iter 100 value 81.065937
final  value 81.065937 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 97.154945 
iter  10 value 94.057290
iter  20 value 93.967474
iter  30 value 86.504671
iter  40 value 84.714921
iter  50 value 84.085016
iter  60 value 83.899724
iter  70 value 83.888474
iter  80 value 83.875388
iter  90 value 83.595123
iter 100 value 81.341982
final  value 81.341982 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.679366 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.097888 
iter  10 value 93.596024
iter  20 value 92.794474
iter  30 value 92.639973
iter  40 value 92.621366
iter  50 value 92.618258
iter  60 value 92.618217
final  value 92.618182 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.162917 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 119.544013 
iter  10 value 92.747201
iter  20 value 92.731197
final  value 92.731184 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.972081 
final  value 94.443243 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.614339 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 110.121281 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.526269 
iter  10 value 93.387365
final  value 93.387354 
converged
Fitting Repeat 4 

# weights:  305
initial  value 94.945114 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.895317 
final  value 94.443243 
converged
Fitting Repeat 1 

# weights:  507
initial  value 105.610462 
final  value 94.443243 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.736486 
iter  10 value 94.443262
final  value 94.443243 
converged
Fitting Repeat 3 

# weights:  507
initial  value 115.529942 
iter  10 value 88.287852
iter  20 value 84.415808
iter  30 value 82.958451
iter  40 value 82.308759
final  value 82.308758 
converged
Fitting Repeat 4 

# weights:  507
initial  value 123.431995 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.750567 
final  value 94.325945 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.856671 
iter  10 value 94.490940
iter  20 value 93.736850
iter  30 value 86.403682
iter  40 value 84.508343
iter  50 value 84.050820
iter  60 value 83.007128
iter  70 value 82.615202
iter  80 value 82.542779
iter  90 value 80.946993
iter 100 value 79.715984
final  value 79.715984 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 98.818886 
iter  10 value 94.417924
iter  20 value 93.763429
iter  30 value 87.436273
iter  40 value 85.575400
iter  50 value 83.671675
iter  60 value 82.248926
iter  70 value 81.382408
final  value 81.377997 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.327256 
iter  10 value 94.491322
iter  20 value 94.019763
iter  30 value 93.771402
iter  40 value 92.388496
iter  50 value 85.479092
iter  60 value 83.144811
iter  70 value 82.733209
iter  80 value 82.610001
final  value 82.605435 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.142863 
iter  10 value 94.486630
iter  20 value 92.885427
iter  30 value 89.465047
iter  40 value 85.129467
iter  50 value 84.151737
iter  60 value 82.812586
iter  70 value 82.485496
iter  80 value 81.102260
iter  90 value 79.818969
iter 100 value 79.450769
final  value 79.450769 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 105.096048 
iter  10 value 94.434278
iter  20 value 88.985571
iter  30 value 87.692749
iter  40 value 86.190741
iter  50 value 83.563987
iter  60 value 81.387020
iter  70 value 80.679037
iter  80 value 79.502789
iter  90 value 79.442637
final  value 79.441280 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.828933 
iter  10 value 94.586013
iter  20 value 92.289766
iter  30 value 91.819895
iter  40 value 90.749754
iter  50 value 85.981763
iter  60 value 81.167250
iter  70 value 79.221661
iter  80 value 78.614670
iter  90 value 78.206856
iter 100 value 77.791448
final  value 77.791448 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 111.748479 
iter  10 value 94.320347
iter  20 value 88.386382
iter  30 value 86.605152
iter  40 value 84.379477
iter  50 value 82.504727
iter  60 value 81.258302
iter  70 value 80.280510
iter  80 value 79.504858
iter  90 value 79.454258
iter 100 value 79.322967
final  value 79.322967 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 112.617752 
iter  10 value 94.448415
iter  20 value 91.521409
iter  30 value 90.063232
iter  40 value 89.556324
iter  50 value 89.245974
iter  60 value 88.049479
iter  70 value 84.678998
iter  80 value 79.607009
iter  90 value 78.556916
iter 100 value 78.245142
final  value 78.245142 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 110.126474 
iter  10 value 94.574766
iter  20 value 89.201121
iter  30 value 84.964499
iter  40 value 84.633145
iter  50 value 84.094987
iter  60 value 83.952554
iter  70 value 83.652700
iter  80 value 81.489394
iter  90 value 79.387080
iter 100 value 79.221956
final  value 79.221956 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 113.408241 
iter  10 value 94.171528
iter  20 value 91.885702
iter  30 value 87.191446
iter  40 value 86.344316
iter  50 value 83.956333
iter  60 value 83.322116
iter  70 value 82.289649
iter  80 value 81.030756
iter  90 value 80.020871
iter 100 value 79.464146
final  value 79.464146 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.019628 
iter  10 value 94.279429
iter  20 value 87.863827
iter  30 value 86.378532
iter  40 value 84.747352
iter  50 value 83.847395
iter  60 value 83.382537
iter  70 value 83.164982
iter  80 value 82.305552
iter  90 value 80.213700
iter 100 value 78.554465
final  value 78.554465 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 129.423486 
iter  10 value 95.404881
iter  20 value 93.867694
iter  30 value 90.822837
iter  40 value 86.000145
iter  50 value 83.946132
iter  60 value 83.097058
iter  70 value 82.847973
iter  80 value 82.287704
iter  90 value 80.063062
iter 100 value 79.256150
final  value 79.256150 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 108.761391 
iter  10 value 94.168231
iter  20 value 84.626747
iter  30 value 83.736776
iter  40 value 82.829555
iter  50 value 79.488394
iter  60 value 78.299017
iter  70 value 78.112915
iter  80 value 78.032421
iter  90 value 77.985527
iter 100 value 77.744617
final  value 77.744617 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 111.666307 
iter  10 value 94.473039
iter  20 value 92.289758
iter  30 value 88.860017
iter  40 value 83.861163
iter  50 value 82.528369
iter  60 value 80.309898
iter  70 value 78.121099
iter  80 value 77.989384
iter  90 value 77.891103
iter 100 value 77.755309
final  value 77.755309 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.048736 
iter  10 value 95.629459
iter  20 value 87.433330
iter  30 value 84.904845
iter  40 value 81.517641
iter  50 value 79.315021
iter  60 value 78.298976
iter  70 value 78.184244
iter  80 value 77.917301
iter  90 value 77.881216
iter 100 value 77.694587
final  value 77.694587 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 105.939028 
iter  10 value 94.485978
iter  20 value 94.484185
iter  30 value 94.214086
final  value 94.214050 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.256180 
final  value 94.485926 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.173915 
final  value 94.485724 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.730999 
final  value 94.486035 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.867164 
iter  10 value 94.485891
final  value 94.484244 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.919402 
iter  10 value 94.490609
iter  20 value 94.321909
iter  30 value 93.390088
iter  40 value 93.389246
iter  50 value 93.388372
iter  60 value 92.752187
final  value 92.736078 
converged
Fitting Repeat 2 

# weights:  305
initial  value 115.521027 
iter  10 value 88.385996
iter  20 value 88.217844
iter  30 value 87.946164
iter  40 value 86.796566
iter  50 value 85.343166
iter  60 value 84.981957
iter  70 value 83.961096
iter  80 value 82.188275
iter  90 value 80.283671
iter 100 value 77.514958
final  value 77.514958 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 109.025047 
iter  10 value 94.489062
iter  20 value 94.484382
iter  30 value 94.375578
iter  40 value 93.341461
iter  50 value 93.337511
iter  60 value 93.337306
final  value 93.337234 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.233300 
iter  10 value 94.482869
iter  20 value 93.075855
iter  30 value 92.500994
iter  40 value 92.496763
iter  50 value 92.496652
final  value 92.496447 
converged
Fitting Repeat 5 

# weights:  305
initial  value 110.091344 
iter  10 value 94.449609
iter  20 value 94.439374
iter  30 value 85.623522
iter  40 value 83.948530
iter  50 value 83.608183
iter  60 value 83.594703
iter  70 value 83.593686
iter  80 value 83.095019
iter  90 value 83.079258
iter 100 value 83.079192
final  value 83.079192 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.841575 
iter  10 value 93.957055
iter  20 value 93.954507
iter  30 value 92.947157
iter  40 value 92.941754
iter  50 value 92.695633
iter  60 value 92.692949
iter  70 value 92.650100
iter  80 value 92.078207
iter  90 value 90.516054
iter 100 value 89.579305
final  value 89.579305 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 102.992489 
iter  10 value 94.492281
iter  20 value 94.377835
iter  30 value 86.961950
iter  40 value 86.260461
iter  50 value 85.585244
iter  60 value 82.824253
iter  70 value 81.130296
iter  80 value 77.070991
iter  90 value 76.807410
iter 100 value 76.803598
final  value 76.803598 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 125.352120 
iter  10 value 94.451497
iter  20 value 93.217949
iter  30 value 93.212135
iter  40 value 91.312205
iter  50 value 83.886786
iter  60 value 81.355917
iter  70 value 81.262087
iter  80 value 81.256285
iter  90 value 80.867626
iter 100 value 80.804511
final  value 80.804511 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 112.636728 
iter  10 value 94.492906
iter  20 value 94.471253
iter  30 value 85.243627
iter  40 value 83.227101
iter  50 value 82.870696
iter  60 value 79.746437
iter  70 value 79.363778
iter  80 value 79.273821
iter  90 value 79.271377
iter 100 value 79.166403
final  value 79.166403 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.308278 
iter  10 value 94.491922
iter  20 value 93.404519
iter  30 value 91.936084
iter  40 value 91.506444
iter  50 value 91.505054
iter  60 value 91.502621
iter  70 value 91.438405
iter  80 value 91.226859
iter  90 value 91.054620
iter 100 value 90.368942
final  value 90.368942 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.930194 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.960536 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.363718 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.512220 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.113222 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.226905 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.983230 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.309333 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.349859 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.107781 
final  value 94.484214 
converged
Fitting Repeat 1 

# weights:  507
initial  value 102.779870 
iter  10 value 94.112570
iter  10 value 94.112570
iter  10 value 94.112570
final  value 94.112570 
converged
Fitting Repeat 2 

# weights:  507
initial  value 106.708796 
final  value 94.466823 
converged
Fitting Repeat 3 

# weights:  507
initial  value 96.549229 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  507
initial  value 117.132207 
iter  10 value 94.431169
iter  20 value 94.428843
final  value 94.428840 
converged
Fitting Repeat 5 

# weights:  507
initial  value 114.739772 
final  value 94.466823 
converged
Fitting Repeat 1 

# weights:  103
initial  value 107.541517 
iter  10 value 92.732265
iter  20 value 91.103992
iter  30 value 90.992674
iter  40 value 90.089499
iter  50 value 90.064445
final  value 90.063989 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.877201 
iter  10 value 94.425601
iter  20 value 94.182174
iter  30 value 91.427817
iter  40 value 85.554010
iter  50 value 85.117993
iter  60 value 84.380625
iter  70 value 84.224340
final  value 84.224289 
converged
Fitting Repeat 3 

# weights:  103
initial  value 106.222816 
iter  10 value 94.393761
iter  20 value 89.509989
iter  30 value 87.860348
iter  40 value 87.200242
iter  50 value 82.590819
iter  60 value 82.066441
iter  70 value 81.679699
iter  80 value 81.484383
iter  90 value 81.465405
iter 100 value 81.462544
final  value 81.462544 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 112.724626 
iter  10 value 94.912703
iter  20 value 94.419813
iter  30 value 88.995678
iter  40 value 84.586620
iter  50 value 83.539566
iter  60 value 83.387465
iter  70 value 82.411340
iter  80 value 81.903600
iter  90 value 81.690449
iter 100 value 81.625194
final  value 81.625194 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 114.043212 
iter  10 value 94.437212
iter  20 value 91.142928
iter  30 value 87.220967
iter  40 value 86.185713
iter  50 value 85.663242
iter  60 value 85.453443
iter  70 value 85.405116
iter  80 value 85.235239
final  value 85.231629 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.842092 
iter  10 value 93.958913
iter  20 value 91.071433
iter  30 value 89.281628
iter  40 value 86.771289
iter  50 value 85.912132
iter  60 value 81.184978
iter  70 value 80.372473
iter  80 value 80.308558
iter  90 value 80.227757
iter 100 value 80.153436
final  value 80.153436 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 120.297353 
iter  10 value 96.376463
iter  20 value 93.780823
iter  30 value 90.780785
iter  40 value 85.904671
iter  50 value 83.593856
iter  60 value 83.039802
iter  70 value 81.428827
iter  80 value 81.073544
iter  90 value 80.970408
iter 100 value 80.874341
final  value 80.874341 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 105.748364 
iter  10 value 94.573640
iter  20 value 91.765891
iter  30 value 90.735377
iter  40 value 85.691490
iter  50 value 83.959316
iter  60 value 83.332663
iter  70 value 82.513668
iter  80 value 81.297652
iter  90 value 80.810377
iter 100 value 80.613338
final  value 80.613338 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 107.003769 
iter  10 value 94.748724
iter  20 value 94.386692
iter  30 value 89.943794
iter  40 value 88.528357
iter  50 value 88.354019
iter  60 value 85.725067
iter  70 value 84.817569
iter  80 value 84.122418
iter  90 value 83.356555
iter 100 value 82.464521
final  value 82.464521 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 106.525880 
iter  10 value 94.500414
iter  20 value 89.049457
iter  30 value 88.697260
iter  40 value 87.966460
iter  50 value 85.260727
iter  60 value 80.987090
iter  70 value 80.573507
iter  80 value 80.515288
iter  90 value 80.420438
iter 100 value 80.229259
final  value 80.229259 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 112.605726 
iter  10 value 96.212107
iter  20 value 93.658172
iter  30 value 89.363178
iter  40 value 84.810407
iter  50 value 84.382278
iter  60 value 82.761654
iter  70 value 82.514554
iter  80 value 82.315432
iter  90 value 81.585611
iter 100 value 80.734157
final  value 80.734157 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.712578 
iter  10 value 94.046208
iter  20 value 87.664198
iter  30 value 85.465564
iter  40 value 84.917556
iter  50 value 84.481302
iter  60 value 84.255440
iter  70 value 83.962491
iter  80 value 82.892710
iter  90 value 82.009592
iter 100 value 81.678999
final  value 81.678999 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 108.810778 
iter  10 value 91.148138
iter  20 value 88.200423
iter  30 value 83.720450
iter  40 value 81.367390
iter  50 value 80.494832
iter  60 value 80.263513
iter  70 value 80.023566
iter  80 value 79.978160
iter  90 value 79.970812
iter 100 value 79.937567
final  value 79.937567 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 111.313303 
iter  10 value 94.772436
iter  20 value 92.227060
iter  30 value 88.136791
iter  40 value 86.871188
iter  50 value 83.560836
iter  60 value 81.938800
iter  70 value 81.514279
iter  80 value 81.223061
iter  90 value 80.871553
iter 100 value 80.362061
final  value 80.362061 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.201115 
iter  10 value 94.361523
iter  20 value 92.813342
iter  30 value 87.175939
iter  40 value 85.432046
iter  50 value 84.453551
iter  60 value 84.348961
iter  70 value 82.549812
iter  80 value 81.415963
iter  90 value 81.225240
iter 100 value 80.931727
final  value 80.931727 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.956366 
final  value 94.468413 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.278287 
final  value 94.090807 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.800366 
final  value 94.485545 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.669763 
final  value 94.485982 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.864176 
final  value 94.486082 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.176264 
iter  10 value 94.471729
iter  20 value 94.345467
iter  30 value 86.180017
iter  40 value 85.927006
iter  50 value 85.893713
iter  60 value 83.661685
iter  70 value 81.107858
iter  80 value 81.099220
iter  90 value 81.095981
iter 100 value 80.731593
final  value 80.731593 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 99.383038 
iter  10 value 94.488874
iter  20 value 94.394220
iter  30 value 85.403204
iter  40 value 84.760918
iter  50 value 83.366496
iter  60 value 82.518855
iter  70 value 82.012976
iter  80 value 82.012269
iter  90 value 81.997771
iter 100 value 81.995546
final  value 81.995546 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 136.303582 
iter  10 value 94.471527
iter  20 value 94.426649
iter  30 value 90.712843
iter  40 value 82.957524
iter  50 value 81.441633
iter  60 value 81.293004
iter  70 value 81.291740
iter  80 value 81.276646
iter  90 value 81.252930
iter 100 value 80.989638
final  value 80.989638 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 96.388085 
iter  10 value 94.170693
iter  20 value 94.166605
iter  30 value 94.121708
iter  40 value 94.063426
iter  50 value 91.316276
iter  60 value 88.700202
iter  70 value 83.005131
iter  80 value 82.985669
iter  90 value 82.681427
iter 100 value 82.679027
final  value 82.679027 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.584602 
iter  10 value 94.110574
iter  20 value 94.104009
iter  30 value 94.076851
iter  40 value 94.076463
iter  40 value 94.076463
final  value 94.076463 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.666910 
iter  10 value 85.203346
iter  20 value 84.490373
iter  30 value 83.635485
iter  40 value 83.508877
iter  50 value 83.421563
iter  60 value 83.418727
iter  70 value 83.418185
iter  80 value 83.247929
iter  90 value 82.979843
iter 100 value 82.963123
final  value 82.963123 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 100.688512 
iter  10 value 94.173529
iter  20 value 94.167425
iter  30 value 94.113967
iter  40 value 94.113483
iter  50 value 94.110417
iter  60 value 94.110299
final  value 94.110290 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.791961 
iter  10 value 94.097457
iter  20 value 94.091381
iter  30 value 94.091010
iter  40 value 93.884035
iter  50 value 90.226302
iter  60 value 89.011252
iter  70 value 88.804609
iter  80 value 84.491540
iter  90 value 82.795043
iter 100 value 82.791443
final  value 82.791443 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 97.995515 
iter  10 value 94.474450
iter  20 value 94.094199
iter  30 value 94.082323
iter  40 value 94.067447
iter  50 value 94.062830
final  value 94.062205 
converged
Fitting Repeat 5 

# weights:  507
initial  value 115.279168 
iter  10 value 94.493227
iter  20 value 92.900683
iter  30 value 86.591875
iter  40 value 84.388040
iter  50 value 83.644988
iter  60 value 82.256639
iter  70 value 82.240519
iter  80 value 82.230906
iter  90 value 82.225559
iter 100 value 81.430216
final  value 81.430216 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.671577 
final  value 94.484210 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.543059 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.627924 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.497543 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.613942 
final  value 94.484210 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.569450 
final  value 94.443182 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.622623 
final  value 94.443243 
converged
Fitting Repeat 3 

# weights:  305
initial  value 110.270542 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 130.045471 
final  value 94.443243 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.852838 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 101.009939 
iter  10 value 94.400026
final  value 94.400000 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.836939 
final  value 94.443243 
converged
Fitting Repeat 3 

# weights:  507
initial  value 105.395984 
final  value 94.443243 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.348232 
final  value 93.634731 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.265923 
iter  10 value 94.129891
final  value 94.129874 
converged
Fitting Repeat 1 

# weights:  103
initial  value 106.839109 
iter  10 value 94.289961
iter  20 value 88.268873
iter  30 value 87.374777
iter  40 value 87.308365
iter  50 value 85.159789
iter  60 value 84.046675
iter  70 value 83.971169
iter  80 value 83.948010
iter  80 value 83.948010
final  value 83.948010 
converged
Fitting Repeat 2 

# weights:  103
initial  value 108.590887 
iter  10 value 94.546013
iter  20 value 94.486872
iter  30 value 92.572583
iter  40 value 91.791084
iter  50 value 91.687662
iter  60 value 90.960897
iter  70 value 88.356801
iter  80 value 84.765049
iter  90 value 84.268956
iter 100 value 84.048584
final  value 84.048584 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 102.446821 
iter  10 value 94.405548
iter  20 value 93.891065
iter  30 value 91.638111
iter  40 value 86.167665
iter  50 value 85.413994
iter  60 value 84.513274
iter  70 value 84.096725
iter  80 value 83.955564
iter  90 value 83.941204
final  value 83.941192 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.544834 
iter  10 value 94.723776
iter  20 value 91.780344
iter  30 value 88.561550
iter  40 value 85.082519
iter  50 value 84.790838
iter  60 value 83.674943
iter  70 value 83.500173
iter  80 value 83.355074
iter  90 value 83.336980
iter 100 value 83.334183
final  value 83.334183 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 102.029078 
iter  10 value 94.489650
iter  20 value 93.834066
iter  30 value 86.207749
iter  40 value 84.803473
iter  50 value 84.153564
iter  60 value 83.957973
final  value 83.941192 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.598816 
iter  10 value 94.481344
iter  20 value 93.504200
iter  30 value 89.646797
iter  40 value 87.430587
iter  50 value 85.292636
iter  60 value 82.994602
iter  70 value 82.703026
iter  80 value 82.107958
iter  90 value 81.884152
iter 100 value 81.807226
final  value 81.807226 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.012260 
iter  10 value 94.176230
iter  20 value 85.515925
iter  30 value 84.640631
iter  40 value 84.458634
iter  50 value 84.302502
iter  60 value 83.451484
iter  70 value 82.868618
iter  80 value 82.655463
iter  90 value 82.468680
iter 100 value 82.398922
final  value 82.398922 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 106.674171 
iter  10 value 93.011739
iter  20 value 92.508994
iter  30 value 91.337057
iter  40 value 91.055115
iter  50 value 84.082345
iter  60 value 83.019139
iter  70 value 82.181372
iter  80 value 81.786747
iter  90 value 81.551383
iter 100 value 81.207335
final  value 81.207335 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.706582 
iter  10 value 94.505030
iter  20 value 85.451129
iter  30 value 84.646947
iter  40 value 82.921827
iter  50 value 82.688758
iter  60 value 82.376491
iter  70 value 81.614715
iter  80 value 81.448323
iter  90 value 81.370211
iter 100 value 81.348002
final  value 81.348002 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 101.885500 
iter  10 value 92.637625
iter  20 value 91.754057
iter  30 value 90.128689
iter  40 value 87.779053
iter  50 value 86.382340
iter  60 value 85.026782
iter  70 value 83.931070
iter  80 value 83.554915
iter  90 value 83.444696
iter 100 value 82.894025
final  value 82.894025 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 113.997633 
iter  10 value 95.435622
iter  20 value 93.876324
iter  30 value 85.262900
iter  40 value 84.706311
iter  50 value 84.570644
iter  60 value 83.987452
iter  70 value 83.470871
iter  80 value 82.744537
iter  90 value 82.560576
iter 100 value 82.467800
final  value 82.467800 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 104.826227 
iter  10 value 94.528054
iter  20 value 91.128682
iter  30 value 89.428919
iter  40 value 84.170993
iter  50 value 82.885753
iter  60 value 81.984331
iter  70 value 81.161070
iter  80 value 81.038643
iter  90 value 80.984397
iter 100 value 80.855046
final  value 80.855046 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 109.125121 
iter  10 value 95.233797
iter  20 value 90.573354
iter  30 value 85.707263
iter  40 value 85.311566
iter  50 value 85.090866
iter  60 value 83.405337
iter  70 value 82.815695
iter  80 value 82.790096
iter  90 value 82.751831
iter 100 value 82.363085
final  value 82.363085 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 124.071441 
iter  10 value 93.934674
iter  20 value 85.524057
iter  30 value 84.376419
iter  40 value 84.148300
iter  50 value 83.235833
iter  60 value 82.722552
iter  70 value 82.579079
iter  80 value 82.517176
iter  90 value 82.440275
iter 100 value 82.312671
final  value 82.312671 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 104.164396 
iter  10 value 94.378205
iter  20 value 88.675562
iter  30 value 88.047329
iter  40 value 87.718425
iter  50 value 83.113655
iter  60 value 82.338682
iter  70 value 81.748184
iter  80 value 81.433779
iter  90 value 81.284174
iter 100 value 81.222758
final  value 81.222758 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.654673 
iter  10 value 94.486045
iter  20 value 94.480781
iter  30 value 92.338932
iter  40 value 92.295652
iter  50 value 92.295282
final  value 92.295123 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.660774 
iter  10 value 94.486032
final  value 94.484218 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.512032 
final  value 94.485789 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.722170 
final  value 94.485957 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.095880 
final  value 94.485883 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.145732 
iter  10 value 94.447896
iter  20 value 94.391586
iter  30 value 89.188760
iter  40 value 84.224381
iter  50 value 80.768780
iter  60 value 80.323482
iter  70 value 80.312907
iter  80 value 80.309305
iter  90 value 80.308124
iter 100 value 80.307936
final  value 80.307936 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 106.507561 
iter  10 value 94.489274
iter  20 value 94.484188
iter  30 value 90.125385
iter  40 value 89.844300
iter  50 value 89.122841
iter  60 value 88.922050
iter  70 value 87.063598
iter  80 value 86.506684
iter  90 value 85.361379
iter 100 value 85.331671
final  value 85.331671 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 95.462200 
iter  10 value 89.677712
iter  20 value 86.510775
iter  30 value 86.506679
iter  40 value 86.504693
iter  50 value 85.821801
iter  60 value 85.316642
iter  70 value 84.843803
iter  80 value 82.068048
iter  90 value 81.359241
iter 100 value 80.726680
final  value 80.726680 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 97.760581 
iter  10 value 94.488965
iter  20 value 94.325088
iter  30 value 84.957997
iter  40 value 84.942021
final  value 84.941741 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.272263 
iter  10 value 94.488892
iter  20 value 94.319065
iter  30 value 91.514793
iter  40 value 91.504978
iter  50 value 91.504760
iter  60 value 91.456644
iter  70 value 91.453568
iter  80 value 88.731691
iter  90 value 84.940088
iter 100 value 84.053504
final  value 84.053504 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 124.921193 
iter  10 value 94.492975
iter  20 value 94.027040
iter  30 value 85.485483
iter  40 value 84.005200
iter  50 value 83.542755
iter  60 value 83.318809
iter  70 value 81.435818
iter  80 value 80.463377
iter  90 value 80.326376
iter 100 value 80.305121
final  value 80.305121 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 101.342382 
iter  10 value 94.451692
iter  20 value 94.418582
iter  30 value 93.266725
iter  40 value 87.582612
iter  50 value 87.205249
iter  60 value 87.202253
iter  70 value 85.744607
iter  80 value 85.387247
iter  90 value 85.386413
iter 100 value 84.665490
final  value 84.665490 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 99.672975 
iter  10 value 94.451854
iter  20 value 94.444859
iter  30 value 89.264051
iter  40 value 86.815077
iter  50 value 85.946030
iter  60 value 84.502819
iter  70 value 84.492512
iter  80 value 83.495424
iter  90 value 83.011390
iter 100 value 82.962460
final  value 82.962460 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 101.557375 
iter  10 value 90.938474
iter  20 value 89.715030
iter  30 value 89.244178
iter  40 value 89.237917
iter  50 value 89.155937
iter  60 value 89.151635
iter  70 value 89.149471
iter  80 value 88.027390
iter  90 value 87.856076
iter 100 value 87.601560
final  value 87.601560 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 96.931267 
iter  10 value 94.490427
iter  20 value 94.326150
iter  30 value 84.340307
final  value 84.331917 
converged
Fitting Repeat 1 

# weights:  305
initial  value 117.946462 
iter  10 value 117.892827
iter  20 value 115.038993
iter  30 value 114.406463
iter  40 value 113.951023
iter  50 value 112.954365
iter  60 value 103.122311
iter  70 value 100.844715
iter  80 value 100.009138
iter  90 value 99.858416
iter 100 value 99.755419
final  value 99.755419 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 123.052085 
iter  10 value 117.763515
iter  20 value 117.758914
final  value 117.758836 
converged
Fitting Repeat 3 

# weights:  305
initial  value 137.375419 
iter  10 value 117.033735
iter  20 value 116.908126
iter  30 value 108.805010
iter  40 value 104.348263
iter  50 value 104.280618
final  value 104.279952 
converged
Fitting Repeat 4 

# weights:  305
initial  value 123.829085 
iter  10 value 117.894226
iter  20 value 117.416317
iter  30 value 108.636440
iter  40 value 105.143341
iter  50 value 101.896244
iter  60 value 101.510804
iter  70 value 100.056843
iter  80 value 99.744896
iter  90 value 99.499499
iter 100 value 99.472342
final  value 99.472342 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 120.355801 
iter  10 value 117.210893
iter  20 value 116.931132
iter  30 value 113.736172
iter  40 value 108.492704
final  value 108.424964 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Fri Jan 31 03:03:09 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  39.43    1.39   75.29 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod34.08 2.3036.55
FreqInteractors0.220.050.28
calculateAAC0.070.000.07
calculateAutocor0.420.090.51
calculateCTDC0.080.010.10
calculateCTDD0.890.040.92
calculateCTDT0.320.010.34
calculateCTriad0.440.000.44
calculateDC0.160.000.15
calculateF0.450.000.46
calculateKSAAP0.110.000.11
calculateQD_Sm2.520.282.79
calculateTC1.860.242.10
calculateTC_Sm0.310.040.36
corr_plot33.56 1.7235.29
enrichfindP 0.61 0.1013.35
enrichfind_hp0.080.011.15
enrichplot0.450.020.47
filter_missing_values000
getFASTA0.000.032.31
getHPI000
get_negativePPI0.010.000.02
get_positivePPI000
impute_missing_data000
plotPPI0.110.000.11
pred_ensembel12.74 0.4812.21
var_imp34.11 1.7235.83