Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-01-27 12:08 -0500 (Mon, 27 Jan 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4746 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.2 (2024-10-31 ucrt) -- "Pile of Leaves" | 4494 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4517 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4469 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.2 (2024-10-31) -- "Pile of Leaves" | 4395 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.12.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-01-24 05:39:41 -0500 (Fri, 24 Jan 2025) |
EndedAt: 2025-01-24 05:58:08 -0500 (Fri, 24 Jan 2025) |
EllapsedTime: 1106.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.2 (2024-10-31) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 12.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 33.355 1.093 44.431 corr_plot 32.732 0.872 34.997 var_imp 32.914 0.660 34.381 pred_ensembel 13.597 0.449 60.256 calculateAutocor 0.474 0.068 11.555 enrichfindP 0.489 0.053 17.941 plotPPI 0.077 0.005 6.961 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/Users/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.2 (2024-10-31) -- "Pile of Leaves" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 96.793128 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.910302 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.641282 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 105.492623 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.577972 final value 94.385583 converged Fitting Repeat 1 # weights: 305 initial value 97.895638 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 100.706342 final value 94.466823 converged Fitting Repeat 3 # weights: 305 initial value 106.644754 final value 94.466823 converged Fitting Repeat 4 # weights: 305 initial value 94.817578 final value 94.365462 converged Fitting Repeat 5 # weights: 305 initial value 96.281052 final value 94.400000 converged Fitting Repeat 1 # weights: 507 initial value 98.221277 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 101.325482 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 113.286295 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 97.141284 iter 10 value 94.260370 iter 20 value 85.693592 iter 30 value 85.631688 final value 85.582895 converged Fitting Repeat 5 # weights: 507 initial value 95.138616 iter 10 value 86.225958 iter 20 value 84.498016 final value 84.481576 converged Fitting Repeat 1 # weights: 103 initial value 99.454463 iter 10 value 94.096463 iter 20 value 87.904224 iter 30 value 86.520482 iter 40 value 85.989721 iter 50 value 85.966969 iter 60 value 85.932372 iter 70 value 85.920970 final value 85.920968 converged Fitting Repeat 2 # weights: 103 initial value 100.084353 iter 10 value 94.488561 iter 20 value 88.540249 iter 30 value 86.745880 iter 40 value 86.139406 iter 50 value 85.109126 iter 60 value 84.715473 iter 70 value 84.601837 final value 84.600904 converged Fitting Repeat 3 # weights: 103 initial value 100.322633 iter 10 value 94.487132 iter 20 value 94.090626 iter 30 value 94.015939 iter 40 value 93.859827 iter 50 value 90.845410 iter 60 value 84.307352 iter 70 value 82.459339 iter 80 value 82.302590 iter 90 value 81.877934 iter 100 value 80.710232 final value 80.710232 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.235172 iter 10 value 94.489971 iter 20 value 94.486764 final value 94.486439 converged Fitting Repeat 5 # weights: 103 initial value 96.806823 iter 10 value 94.490592 iter 20 value 94.475073 iter 30 value 86.740021 iter 40 value 86.038384 iter 50 value 85.944333 iter 60 value 85.921814 final value 85.920969 converged Fitting Repeat 1 # weights: 305 initial value 108.735401 iter 10 value 94.033886 iter 20 value 86.729501 iter 30 value 84.887398 iter 40 value 81.267593 iter 50 value 80.185452 iter 60 value 80.009423 iter 70 value 79.931624 iter 80 value 79.567337 iter 90 value 79.486492 iter 100 value 79.459962 final value 79.459962 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.781650 iter 10 value 94.428749 iter 20 value 92.826056 iter 30 value 87.633421 iter 40 value 85.738571 iter 50 value 84.454318 iter 60 value 83.111557 iter 70 value 82.425641 iter 80 value 81.917825 iter 90 value 81.789874 iter 100 value 81.725537 final value 81.725537 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.641404 iter 10 value 94.465817 iter 20 value 87.564728 iter 30 value 85.873088 iter 40 value 84.857097 iter 50 value 82.778574 iter 60 value 81.757793 iter 70 value 80.889876 iter 80 value 80.684430 iter 90 value 80.101284 iter 100 value 79.478077 final value 79.478077 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.246385 iter 10 value 94.518185 iter 20 value 93.335578 iter 30 value 88.226740 iter 40 value 87.953772 iter 50 value 86.022359 iter 60 value 85.444940 iter 70 value 83.006967 iter 80 value 82.733372 iter 90 value 82.500204 iter 100 value 82.130268 final value 82.130268 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.996299 iter 10 value 94.323371 iter 20 value 87.738158 iter 30 value 85.270213 iter 40 value 84.049709 iter 50 value 83.472327 iter 60 value 80.538952 iter 70 value 80.057464 iter 80 value 79.398595 iter 90 value 79.283707 iter 100 value 79.279104 final value 79.279104 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.101045 iter 10 value 94.927368 iter 20 value 86.507183 iter 30 value 85.824675 iter 40 value 85.726196 iter 50 value 85.668462 iter 60 value 83.959408 iter 70 value 81.882868 iter 80 value 81.467907 iter 90 value 81.157252 iter 100 value 80.084772 final value 80.084772 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.069416 iter 10 value 94.479743 iter 20 value 90.676867 iter 30 value 86.324979 iter 40 value 84.717104 iter 50 value 84.133192 iter 60 value 83.949027 iter 70 value 83.699036 iter 80 value 82.527303 iter 90 value 80.128119 iter 100 value 79.775017 final value 79.775017 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.437020 iter 10 value 94.509113 iter 20 value 94.057164 iter 30 value 93.340203 iter 40 value 93.074431 iter 50 value 92.347496 iter 60 value 89.624034 iter 70 value 84.255284 iter 80 value 82.790238 iter 90 value 82.300596 iter 100 value 82.230768 final value 82.230768 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.000932 iter 10 value 90.703084 iter 20 value 88.066758 iter 30 value 86.600217 iter 40 value 83.776392 iter 50 value 82.260596 iter 60 value 80.731673 iter 70 value 80.429280 iter 80 value 79.850215 iter 90 value 79.807864 iter 100 value 79.781214 final value 79.781214 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.665387 iter 10 value 94.573154 iter 20 value 94.439448 iter 30 value 94.100615 iter 40 value 93.472293 iter 50 value 90.617394 iter 60 value 86.716767 iter 70 value 84.976090 iter 80 value 84.375611 iter 90 value 83.076213 iter 100 value 82.334865 final value 82.334865 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.515853 final value 94.401494 converged Fitting Repeat 2 # weights: 103 initial value 100.487059 final value 94.485930 converged Fitting Repeat 3 # weights: 103 initial value 100.613552 final value 94.485780 converged Fitting Repeat 4 # weights: 103 initial value 100.640295 final value 94.486005 converged Fitting Repeat 5 # weights: 103 initial value 106.623508 final value 94.485793 converged Fitting Repeat 1 # weights: 305 initial value 103.518002 iter 10 value 94.488902 iter 20 value 94.484109 iter 30 value 94.431539 iter 40 value 93.990710 iter 50 value 90.427493 iter 60 value 86.587715 iter 70 value 86.264662 iter 80 value 86.075754 iter 90 value 86.068719 iter 100 value 83.776805 final value 83.776805 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.342340 iter 10 value 94.496812 iter 20 value 94.488130 iter 30 value 93.789301 iter 40 value 93.775712 iter 50 value 93.756065 iter 60 value 93.662804 iter 70 value 93.642804 iter 80 value 93.641820 iter 90 value 93.641178 iter 100 value 93.639686 final value 93.639686 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 119.534740 iter 10 value 94.471929 iter 20 value 94.467791 iter 30 value 93.484545 iter 40 value 84.099023 iter 50 value 84.029149 final value 84.022853 converged Fitting Repeat 4 # weights: 305 initial value 103.672105 iter 10 value 94.471701 iter 20 value 94.467057 iter 30 value 94.303026 iter 40 value 92.916562 iter 50 value 91.072739 final value 91.071154 converged Fitting Repeat 5 # weights: 305 initial value 98.989372 iter 10 value 94.487659 iter 20 value 94.469413 iter 30 value 94.468066 iter 40 value 94.466443 iter 50 value 87.352756 iter 60 value 85.395263 iter 70 value 83.336689 iter 80 value 83.294007 iter 90 value 83.269443 iter 100 value 83.115743 final value 83.115743 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 95.904094 iter 10 value 94.407461 iter 20 value 94.319844 iter 30 value 90.163465 iter 40 value 88.871328 iter 50 value 88.867188 iter 60 value 88.858026 iter 70 value 88.854708 iter 80 value 87.977491 iter 90 value 86.554341 iter 100 value 85.666728 final value 85.666728 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 100.146336 iter 10 value 88.197573 iter 20 value 85.152367 iter 30 value 82.213690 iter 40 value 79.701612 iter 50 value 79.670126 iter 60 value 79.669109 final value 79.668473 converged Fitting Repeat 3 # weights: 507 initial value 112.566875 iter 10 value 94.317919 iter 20 value 94.312660 iter 30 value 94.311942 iter 40 value 94.220011 iter 50 value 91.223680 iter 60 value 89.994468 iter 70 value 84.241731 iter 80 value 83.911748 iter 90 value 83.726018 iter 100 value 83.725832 final value 83.725832 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.055864 iter 10 value 92.954388 iter 20 value 92.807069 iter 30 value 92.699890 iter 40 value 92.648585 iter 50 value 92.639700 final value 92.639633 converged Fitting Repeat 5 # weights: 507 initial value 109.481058 iter 10 value 94.493115 iter 20 value 94.484708 iter 30 value 94.019528 iter 40 value 93.991909 final value 93.991860 converged Fitting Repeat 1 # weights: 103 initial value 96.058853 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 102.017329 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.621944 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.771512 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.471265 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.087985 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 99.017957 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.868523 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 99.129275 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 117.308960 iter 10 value 94.484218 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.726186 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 104.518130 iter 10 value 94.276080 iter 20 value 94.275363 iter 20 value 94.275363 iter 20 value 94.275363 final value 94.275363 converged Fitting Repeat 3 # weights: 507 initial value 103.132430 final value 94.275362 converged Fitting Repeat 4 # weights: 507 initial value 102.635938 iter 10 value 94.275362 iter 10 value 94.275362 iter 10 value 94.275362 final value 94.275362 converged Fitting Repeat 5 # weights: 507 initial value 99.531088 iter 10 value 93.605787 iter 20 value 93.179143 iter 30 value 92.861026 iter 40 value 92.692136 final value 92.689978 converged Fitting Repeat 1 # weights: 103 initial value 103.152761 iter 10 value 94.488556 iter 20 value 94.154371 iter 30 value 94.121869 iter 40 value 94.114361 iter 50 value 93.736061 iter 60 value 87.109775 iter 70 value 86.176767 iter 80 value 86.034175 iter 90 value 85.950676 iter 100 value 85.938332 final value 85.938332 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 106.440208 iter 10 value 94.488083 iter 20 value 94.474495 iter 30 value 89.309119 iter 40 value 85.494959 iter 50 value 84.186133 iter 60 value 83.906409 iter 70 value 82.755473 final value 82.752825 converged Fitting Repeat 3 # weights: 103 initial value 99.032357 iter 10 value 94.488561 iter 20 value 85.085965 iter 30 value 82.906127 iter 40 value 82.669202 iter 50 value 82.308102 iter 60 value 82.158904 final value 82.149842 converged Fitting Repeat 4 # weights: 103 initial value 101.549453 iter 10 value 94.525263 iter 20 value 94.420178 iter 30 value 94.335806 iter 40 value 94.116513 iter 50 value 85.491413 iter 60 value 84.460018 iter 70 value 83.472813 iter 80 value 82.772232 iter 90 value 82.752828 iter 90 value 82.752827 iter 90 value 82.752827 final value 82.752827 converged Fitting Repeat 5 # weights: 103 initial value 96.144341 iter 10 value 94.489275 iter 20 value 94.419907 iter 30 value 92.004172 iter 40 value 83.830707 iter 50 value 83.121127 iter 60 value 82.300260 iter 70 value 82.092275 iter 80 value 82.005743 iter 90 value 81.931109 final value 81.931057 converged Fitting Repeat 1 # weights: 305 initial value 115.092186 iter 10 value 94.803283 iter 20 value 93.863817 iter 30 value 91.294936 iter 40 value 91.039030 iter 50 value 90.125070 iter 60 value 89.700814 iter 70 value 85.578324 iter 80 value 80.663395 iter 90 value 79.311619 iter 100 value 79.119231 final value 79.119231 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.249260 iter 10 value 94.282527 iter 20 value 94.106581 iter 30 value 89.196066 iter 40 value 82.542557 iter 50 value 81.379956 iter 60 value 80.637573 iter 70 value 80.161481 iter 80 value 79.557791 iter 90 value 79.143210 iter 100 value 78.472901 final value 78.472901 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.719278 iter 10 value 92.301257 iter 20 value 90.876810 iter 30 value 89.752403 iter 40 value 89.434198 iter 50 value 89.332757 iter 60 value 89.194576 iter 70 value 89.180005 iter 80 value 88.159182 iter 90 value 81.661344 iter 100 value 81.528269 final value 81.528269 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.921523 iter 10 value 94.446531 iter 20 value 89.268558 iter 30 value 86.297370 iter 40 value 82.397004 iter 50 value 81.624683 iter 60 value 81.352618 iter 70 value 80.675128 iter 80 value 79.815373 iter 90 value 79.016948 iter 100 value 78.746310 final value 78.746310 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.723741 iter 10 value 94.533797 iter 20 value 86.928724 iter 30 value 82.820627 iter 40 value 82.472032 iter 50 value 82.154419 iter 60 value 81.679177 iter 70 value 80.356818 iter 80 value 78.683912 iter 90 value 78.562084 iter 100 value 78.379301 final value 78.379301 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.295831 iter 10 value 94.214373 iter 20 value 89.374672 iter 30 value 83.991074 iter 40 value 83.259029 iter 50 value 82.109962 iter 60 value 81.143866 iter 70 value 79.330555 iter 80 value 78.517145 iter 90 value 78.371774 iter 100 value 78.295719 final value 78.295719 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 127.230472 iter 10 value 94.598425 iter 20 value 82.152814 iter 30 value 79.586562 iter 40 value 78.155219 iter 50 value 77.930997 iter 60 value 77.794614 iter 70 value 77.744536 iter 80 value 77.690704 iter 90 value 77.653128 iter 100 value 77.610028 final value 77.610028 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.012690 iter 10 value 94.355109 iter 20 value 90.599307 iter 30 value 86.046959 iter 40 value 80.769073 iter 50 value 79.616816 iter 60 value 79.470970 iter 70 value 79.003973 iter 80 value 78.406007 iter 90 value 78.272688 iter 100 value 78.049458 final value 78.049458 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.263532 iter 10 value 95.031922 iter 20 value 93.137394 iter 30 value 91.370933 iter 40 value 82.392300 iter 50 value 81.131295 iter 60 value 80.039313 iter 70 value 79.277032 iter 80 value 79.062492 iter 90 value 78.870630 iter 100 value 78.736000 final value 78.736000 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.067966 iter 10 value 94.815829 iter 20 value 82.685586 iter 30 value 81.260810 iter 40 value 79.380652 iter 50 value 78.406267 iter 60 value 78.122944 iter 70 value 78.050834 iter 80 value 78.044770 iter 90 value 78.006589 iter 100 value 77.978268 final value 77.978268 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.904441 final value 94.485603 converged Fitting Repeat 2 # weights: 103 initial value 106.461287 final value 94.485975 converged Fitting Repeat 3 # weights: 103 initial value 107.316898 iter 10 value 94.485709 iter 20 value 94.484113 iter 30 value 94.053296 final value 94.046283 converged Fitting Repeat 4 # weights: 103 initial value 96.006578 final value 94.486004 converged Fitting Repeat 5 # weights: 103 initial value 95.114520 iter 10 value 94.073016 final value 94.054004 converged Fitting Repeat 1 # weights: 305 initial value 110.099855 iter 10 value 94.489326 iter 20 value 93.769636 iter 30 value 87.268234 iter 40 value 87.249565 iter 50 value 87.248266 iter 60 value 87.247376 iter 70 value 87.246620 iter 80 value 87.232736 final value 87.232211 converged Fitting Repeat 2 # weights: 305 initial value 99.613941 iter 10 value 94.280635 iter 20 value 94.276123 final value 94.275859 converged Fitting Repeat 3 # weights: 305 initial value 103.111490 iter 10 value 94.280809 iter 20 value 94.277641 iter 30 value 94.275248 iter 30 value 94.275247 iter 30 value 94.275247 final value 94.275247 converged Fitting Repeat 4 # weights: 305 initial value 96.609481 iter 10 value 94.280178 iter 20 value 94.084015 iter 30 value 94.049951 iter 40 value 94.049804 final value 94.049782 converged Fitting Repeat 5 # weights: 305 initial value 100.646753 iter 10 value 94.488897 iter 20 value 89.352625 iter 30 value 82.590368 iter 40 value 82.051599 iter 50 value 82.049434 iter 60 value 82.018414 iter 70 value 81.934655 iter 80 value 81.934368 iter 90 value 81.934197 final value 81.933741 converged Fitting Repeat 1 # weights: 507 initial value 105.519986 iter 10 value 94.060799 iter 20 value 93.649986 iter 30 value 84.048141 iter 40 value 83.712901 final value 83.103716 converged Fitting Repeat 2 # weights: 507 initial value 104.799716 iter 10 value 94.492427 iter 20 value 94.482587 iter 30 value 92.041963 iter 40 value 83.722838 iter 50 value 83.709991 iter 60 value 83.699060 iter 70 value 78.323356 iter 80 value 77.053807 iter 90 value 76.926486 iter 100 value 76.911048 final value 76.911048 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 99.457567 iter 10 value 94.283167 iter 20 value 93.940605 iter 30 value 87.875170 iter 40 value 83.482438 iter 50 value 82.520707 iter 60 value 81.566382 iter 70 value 81.084468 iter 80 value 81.059506 iter 90 value 81.059262 final value 81.058939 converged Fitting Repeat 4 # weights: 507 initial value 98.235090 iter 10 value 94.491680 iter 20 value 94.484228 iter 30 value 94.475008 final value 94.275490 converged Fitting Repeat 5 # weights: 507 initial value 110.053595 iter 10 value 94.283705 iter 20 value 94.275584 iter 30 value 92.448825 iter 40 value 89.816872 iter 50 value 89.092541 iter 60 value 88.949836 iter 70 value 88.705729 iter 80 value 88.689633 iter 90 value 87.356271 iter 100 value 82.167273 final value 82.167273 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.421279 final value 94.354396 converged Fitting Repeat 2 # weights: 103 initial value 94.555785 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.563220 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 107.104578 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 113.676324 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.744249 iter 10 value 94.484657 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 104.366207 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 107.492439 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 99.201607 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 99.311514 final value 94.322897 converged Fitting Repeat 1 # weights: 507 initial value 122.042077 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 127.389523 final value 94.206005 converged Fitting Repeat 3 # weights: 507 initial value 108.463421 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 95.624245 iter 10 value 89.341014 iter 20 value 87.991730 iter 30 value 85.807384 iter 40 value 85.410909 iter 50 value 85.212418 iter 60 value 84.352064 iter 70 value 84.215494 iter 80 value 84.212118 iter 90 value 84.211159 iter 100 value 84.210652 final value 84.210652 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 98.709702 iter 10 value 94.465465 final value 94.453335 converged Fitting Repeat 1 # weights: 103 initial value 100.594819 iter 10 value 93.799445 iter 20 value 87.761857 iter 30 value 87.510896 iter 40 value 87.315717 iter 50 value 85.537431 iter 60 value 85.362063 iter 70 value 84.932233 iter 80 value 84.648875 iter 90 value 84.633155 final value 84.623191 converged Fitting Repeat 2 # weights: 103 initial value 103.386985 iter 10 value 94.509374 iter 20 value 94.440613 iter 30 value 90.726681 iter 40 value 89.204674 iter 50 value 89.141072 iter 60 value 88.886826 iter 70 value 88.167863 iter 80 value 87.664137 iter 90 value 87.557136 iter 100 value 87.481760 final value 87.481760 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.538856 iter 10 value 94.490971 iter 20 value 94.272440 iter 30 value 92.887430 iter 40 value 91.058280 iter 50 value 87.934726 iter 60 value 86.545559 iter 70 value 84.790105 iter 80 value 84.360501 iter 90 value 84.345891 iter 100 value 84.189671 final value 84.189671 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.030123 iter 10 value 93.471566 iter 20 value 89.680155 iter 30 value 88.105499 iter 40 value 86.977520 iter 50 value 86.960486 iter 60 value 86.950335 final value 86.949795 converged Fitting Repeat 5 # weights: 103 initial value 99.444610 iter 10 value 93.970840 iter 20 value 91.511008 iter 30 value 89.258214 iter 40 value 88.920604 iter 50 value 87.127206 iter 60 value 86.585611 iter 70 value 86.565653 final value 86.556969 converged Fitting Repeat 1 # weights: 305 initial value 106.838825 iter 10 value 94.370324 iter 20 value 88.944062 iter 30 value 87.734861 iter 40 value 87.015066 iter 50 value 86.706293 iter 60 value 86.625362 iter 70 value 86.442654 iter 80 value 86.044821 iter 90 value 84.770372 iter 100 value 84.410127 final value 84.410127 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.153421 iter 10 value 94.465137 iter 20 value 90.864431 iter 30 value 88.807592 iter 40 value 88.186419 iter 50 value 86.597905 iter 60 value 84.345862 iter 70 value 83.978524 iter 80 value 83.518372 iter 90 value 83.364331 iter 100 value 83.237937 final value 83.237937 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.873588 iter 10 value 94.708405 iter 20 value 94.508292 iter 30 value 94.298045 iter 40 value 90.863306 iter 50 value 89.789979 iter 60 value 88.641638 iter 70 value 87.676734 iter 80 value 87.041116 iter 90 value 86.247754 iter 100 value 85.934163 final value 85.934163 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 117.715646 iter 10 value 94.467935 iter 20 value 86.691457 iter 30 value 85.885665 iter 40 value 83.938796 iter 50 value 83.402175 iter 60 value 83.171704 iter 70 value 83.060056 iter 80 value 82.990808 iter 90 value 82.986258 iter 100 value 82.966827 final value 82.966827 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.264965 iter 10 value 94.456232 iter 20 value 92.277426 iter 30 value 87.480956 iter 40 value 85.441421 iter 50 value 84.189172 iter 60 value 83.643490 iter 70 value 83.134480 iter 80 value 82.930667 iter 90 value 82.784037 iter 100 value 82.676107 final value 82.676107 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 106.192336 iter 10 value 97.093043 iter 20 value 91.859821 iter 30 value 86.345053 iter 40 value 85.389958 iter 50 value 85.005552 iter 60 value 84.820382 iter 70 value 84.764858 iter 80 value 84.708225 iter 90 value 84.650021 iter 100 value 84.252995 final value 84.252995 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 125.574682 iter 10 value 94.704196 iter 20 value 91.178378 iter 30 value 88.385532 iter 40 value 86.797062 iter 50 value 84.715804 iter 60 value 82.938408 iter 70 value 82.596522 iter 80 value 82.420701 iter 90 value 82.349480 iter 100 value 82.264887 final value 82.264887 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.515844 iter 10 value 90.900948 iter 20 value 88.408315 iter 30 value 87.085702 iter 40 value 85.680380 iter 50 value 84.745645 iter 60 value 83.680104 iter 70 value 82.908890 iter 80 value 82.691369 iter 90 value 82.597762 iter 100 value 82.510149 final value 82.510149 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 126.121283 iter 10 value 94.291014 iter 20 value 93.166050 iter 30 value 92.681937 iter 40 value 91.916941 iter 50 value 86.149198 iter 60 value 83.954529 iter 70 value 83.586100 iter 80 value 83.042012 iter 90 value 82.542465 iter 100 value 82.398286 final value 82.398286 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 115.492587 iter 10 value 94.471272 iter 20 value 92.228618 iter 30 value 87.178015 iter 40 value 85.654159 iter 50 value 84.954277 iter 60 value 84.839404 iter 70 value 84.566797 iter 80 value 84.356458 iter 90 value 84.120839 iter 100 value 83.975491 final value 83.975491 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.284651 final value 94.485757 converged Fitting Repeat 2 # weights: 103 initial value 97.335110 final value 94.485821 converged Fitting Repeat 3 # weights: 103 initial value 95.274614 final value 94.486069 converged Fitting Repeat 4 # weights: 103 initial value 105.873665 final value 94.486204 converged Fitting Repeat 5 # weights: 103 initial value 94.629225 final value 94.485843 converged Fitting Repeat 1 # weights: 305 initial value 97.035677 iter 10 value 94.335281 iter 20 value 94.314082 iter 30 value 89.334934 iter 40 value 88.537590 iter 50 value 88.537260 iter 60 value 88.534644 iter 70 value 88.247600 iter 80 value 88.244776 iter 90 value 88.244666 iter 100 value 88.243035 final value 88.243035 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 98.108901 iter 10 value 93.304731 iter 20 value 92.240234 iter 30 value 92.233543 iter 40 value 92.210847 iter 50 value 92.129087 iter 60 value 92.126190 iter 70 value 92.125541 iter 80 value 92.124804 iter 90 value 91.925764 final value 91.925614 converged Fitting Repeat 3 # weights: 305 initial value 99.214779 iter 10 value 94.487847 iter 20 value 94.354492 final value 94.354455 converged Fitting Repeat 4 # weights: 305 initial value 95.265560 iter 10 value 94.488775 iter 20 value 94.419819 final value 94.354478 converged Fitting Repeat 5 # weights: 305 initial value 115.522909 iter 10 value 94.489508 iter 20 value 94.205448 iter 30 value 88.262294 iter 40 value 87.709068 final value 87.674329 converged Fitting Repeat 1 # weights: 507 initial value 95.855692 iter 10 value 94.362607 iter 20 value 94.030396 iter 30 value 89.417525 iter 40 value 88.649001 iter 50 value 87.019659 iter 60 value 87.003643 iter 70 value 86.991572 iter 80 value 86.991419 iter 90 value 86.991076 final value 86.990966 converged Fitting Repeat 2 # weights: 507 initial value 119.132143 iter 10 value 94.492644 iter 20 value 94.412470 iter 30 value 94.351395 iter 40 value 93.600529 iter 50 value 87.687067 iter 60 value 87.377040 iter 70 value 87.373616 iter 80 value 86.615549 iter 90 value 86.375124 iter 100 value 86.115414 final value 86.115414 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.959317 iter 10 value 94.331004 iter 20 value 94.325857 iter 30 value 94.324461 iter 40 value 92.789652 iter 50 value 85.925513 iter 60 value 85.916252 iter 70 value 85.523247 iter 80 value 85.523162 final value 85.523126 converged Fitting Repeat 4 # weights: 507 initial value 121.132861 iter 10 value 94.492336 iter 20 value 93.792842 iter 30 value 90.719749 iter 40 value 88.253207 iter 50 value 88.238824 iter 60 value 88.226525 final value 88.225718 converged Fitting Repeat 5 # weights: 507 initial value 100.258574 iter 10 value 94.362806 iter 20 value 94.354654 iter 30 value 90.543063 iter 40 value 89.034638 iter 50 value 88.639503 iter 60 value 88.628048 final value 88.627970 converged Fitting Repeat 1 # weights: 103 initial value 107.465322 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 99.437516 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 100.697162 final value 91.824176 converged Fitting Repeat 4 # weights: 103 initial value 96.261932 final value 93.836066 converged Fitting Repeat 5 # weights: 103 initial value 94.255329 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 110.184246 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 100.865558 final value 94.052902 converged Fitting Repeat 3 # weights: 305 initial value 94.930934 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 104.632099 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 99.139644 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 100.200825 iter 10 value 91.675405 final value 91.653679 converged Fitting Repeat 2 # weights: 507 initial value 94.447007 final value 93.836066 converged Fitting Repeat 3 # weights: 507 initial value 100.497876 iter 10 value 91.781468 iter 20 value 86.121916 iter 30 value 84.204580 iter 40 value 84.141680 iter 40 value 84.141680 iter 40 value 84.141680 final value 84.141680 converged Fitting Repeat 4 # weights: 507 initial value 111.388556 final value 94.052910 converged Fitting Repeat 5 # weights: 507 initial value 97.407731 iter 10 value 93.141412 iter 20 value 93.122067 final value 93.122019 converged Fitting Repeat 1 # weights: 103 initial value 101.758576 iter 10 value 94.056766 iter 20 value 93.714938 iter 30 value 84.996981 iter 40 value 84.684889 iter 50 value 82.794377 iter 60 value 82.712049 iter 70 value 82.051514 iter 80 value 81.842617 iter 90 value 81.584151 iter 100 value 81.265128 final value 81.265128 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.176595 iter 10 value 94.056658 iter 20 value 93.195727 iter 30 value 85.373037 iter 40 value 84.796649 iter 50 value 83.352517 iter 60 value 83.216084 iter 70 value 83.099324 iter 80 value 82.722312 iter 90 value 82.490696 iter 100 value 82.030880 final value 82.030880 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.118972 iter 10 value 94.085811 iter 20 value 94.054995 iter 30 value 93.997362 iter 40 value 93.246047 iter 50 value 91.990038 iter 60 value 91.813312 iter 70 value 91.774563 iter 80 value 90.959060 iter 90 value 86.589499 iter 100 value 84.371397 final value 84.371397 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 104.329553 iter 10 value 94.040207 iter 20 value 92.352252 iter 30 value 84.937483 iter 40 value 82.792268 iter 50 value 81.794452 iter 60 value 81.509353 iter 70 value 81.269525 final value 81.267554 converged Fitting Repeat 5 # weights: 103 initial value 108.344625 iter 10 value 94.058641 iter 20 value 92.266138 iter 30 value 90.597228 iter 40 value 83.331073 iter 50 value 82.750806 iter 60 value 82.315868 iter 70 value 81.990518 iter 80 value 81.604708 iter 90 value 81.552183 iter 100 value 81.526302 final value 81.526302 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.618883 iter 10 value 93.581710 iter 20 value 86.566675 iter 30 value 84.755402 iter 40 value 84.675441 iter 50 value 82.575604 iter 60 value 81.528278 iter 70 value 81.219524 iter 80 value 81.186693 iter 90 value 81.143803 iter 100 value 81.057060 final value 81.057060 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.349217 iter 10 value 92.804988 iter 20 value 85.102179 iter 30 value 83.925385 iter 40 value 82.717650 iter 50 value 81.539988 iter 60 value 81.281518 iter 70 value 81.195928 iter 80 value 80.911077 iter 90 value 80.480075 iter 100 value 80.361645 final value 80.361645 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.805910 iter 10 value 89.994545 iter 20 value 83.332370 iter 30 value 82.965919 iter 40 value 82.452393 iter 50 value 82.325383 iter 60 value 81.566469 iter 70 value 81.340854 iter 80 value 81.311731 iter 90 value 81.308379 iter 100 value 81.209610 final value 81.209610 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.861427 iter 10 value 93.690210 iter 20 value 84.423353 iter 30 value 83.223968 iter 40 value 82.591000 iter 50 value 82.147107 iter 60 value 81.343319 iter 70 value 80.563797 iter 80 value 80.049103 iter 90 value 80.024565 iter 100 value 79.999490 final value 79.999490 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.472369 iter 10 value 94.099705 iter 20 value 93.996445 iter 30 value 83.771279 iter 40 value 83.172823 iter 50 value 82.147007 iter 60 value 81.042150 iter 70 value 80.654469 iter 80 value 80.527396 iter 90 value 80.438968 iter 100 value 80.402130 final value 80.402130 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 113.020863 iter 10 value 94.008563 iter 20 value 90.492318 iter 30 value 84.716075 iter 40 value 83.385880 iter 50 value 82.178699 iter 60 value 81.225446 iter 70 value 80.560086 iter 80 value 80.322699 iter 90 value 80.107587 iter 100 value 79.908894 final value 79.908894 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 126.767740 iter 10 value 93.840314 iter 20 value 84.311517 iter 30 value 82.660829 iter 40 value 81.436542 iter 50 value 80.336924 iter 60 value 80.174559 iter 70 value 79.872511 iter 80 value 79.690010 iter 90 value 79.598393 iter 100 value 79.527682 final value 79.527682 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.253523 iter 10 value 93.529270 iter 20 value 92.388103 iter 30 value 84.048195 iter 40 value 82.330449 iter 50 value 82.121741 iter 60 value 81.770288 iter 70 value 81.239456 iter 80 value 80.788529 iter 90 value 80.412895 iter 100 value 80.344917 final value 80.344917 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.147452 iter 10 value 93.623887 iter 20 value 82.623693 iter 30 value 81.101604 iter 40 value 80.398214 iter 50 value 80.194220 iter 60 value 80.054720 iter 70 value 79.773614 iter 80 value 79.671074 iter 90 value 79.658503 iter 100 value 79.640969 final value 79.640969 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.634800 iter 10 value 91.396049 iter 20 value 86.091135 iter 30 value 84.590218 iter 40 value 82.033884 iter 50 value 80.917301 iter 60 value 80.542711 iter 70 value 80.397772 iter 80 value 80.275914 iter 90 value 80.136135 iter 100 value 80.020945 final value 80.020945 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.746383 final value 94.054396 converged Fitting Repeat 2 # weights: 103 initial value 95.573817 final value 94.054906 converged Fitting Repeat 3 # weights: 103 initial value 95.911714 final value 94.054625 converged Fitting Repeat 4 # weights: 103 initial value 97.027706 iter 10 value 94.007517 iter 20 value 93.980434 iter 30 value 93.964684 final value 93.964659 converged Fitting Repeat 5 # weights: 103 initial value 94.087891 iter 10 value 82.190119 iter 20 value 81.846792 iter 30 value 81.842847 iter 40 value 81.683676 final value 81.551853 converged Fitting Repeat 1 # weights: 305 initial value 120.224111 iter 10 value 93.596940 iter 20 value 88.614845 iter 30 value 88.609037 iter 40 value 88.525313 iter 50 value 87.391083 iter 60 value 87.051980 iter 70 value 87.048044 iter 80 value 86.881979 iter 90 value 86.754812 iter 100 value 86.754624 final value 86.754624 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.786255 iter 10 value 93.548258 iter 20 value 93.465761 iter 30 value 93.365519 iter 40 value 91.099132 iter 50 value 83.572490 final value 83.572453 converged Fitting Repeat 3 # weights: 305 initial value 94.690006 iter 10 value 94.057502 iter 20 value 93.954930 iter 30 value 83.518096 iter 40 value 83.512545 iter 50 value 82.218153 iter 60 value 81.749239 iter 70 value 81.546492 iter 80 value 81.337631 iter 90 value 80.954552 iter 100 value 79.574883 final value 79.574883 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 98.151762 iter 10 value 93.270755 iter 20 value 91.596113 iter 30 value 91.581881 iter 40 value 91.580671 final value 91.580612 converged Fitting Repeat 5 # weights: 305 initial value 107.980957 iter 10 value 93.814011 iter 20 value 93.810391 iter 30 value 93.808960 iter 40 value 90.554087 final value 90.410595 converged Fitting Repeat 1 # weights: 507 initial value 105.177905 iter 10 value 93.844144 iter 20 value 93.836963 final value 93.836292 converged Fitting Repeat 2 # weights: 507 initial value 106.448268 iter 10 value 94.059409 iter 20 value 94.002185 iter 30 value 83.058857 iter 40 value 81.477271 iter 50 value 81.312626 iter 60 value 81.107862 iter 70 value 80.904831 iter 80 value 80.392790 iter 90 value 80.382023 iter 100 value 80.111414 final value 80.111414 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.704672 iter 10 value 88.546546 iter 20 value 84.356604 iter 30 value 84.113909 iter 40 value 83.904761 iter 50 value 83.871413 iter 60 value 83.869002 iter 70 value 83.866171 iter 80 value 83.688334 iter 90 value 83.685582 iter 100 value 83.573151 final value 83.573151 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.058110 iter 10 value 94.060882 iter 20 value 94.052946 iter 30 value 94.008066 iter 40 value 86.729545 iter 50 value 84.854895 iter 60 value 83.533406 iter 70 value 83.523541 iter 80 value 83.134151 iter 90 value 83.121051 iter 100 value 82.124334 final value 82.124334 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 96.559486 iter 10 value 94.061255 iter 20 value 94.046880 iter 30 value 92.752840 iter 40 value 92.706531 iter 50 value 92.584057 iter 60 value 92.526089 iter 70 value 90.590463 iter 80 value 89.851995 iter 90 value 83.884652 iter 100 value 83.313012 final value 83.313012 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.585993 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.381778 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.332791 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 101.411731 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.460014 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 99.632991 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.705348 final value 94.052912 converged Fitting Repeat 3 # weights: 305 initial value 100.555089 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 106.141233 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 99.995142 final value 94.008696 converged Fitting Repeat 1 # weights: 507 initial value 118.878787 iter 10 value 85.335187 iter 20 value 83.458766 final value 83.422018 converged Fitting Repeat 2 # weights: 507 initial value 100.320929 iter 10 value 85.573373 final value 85.321378 converged Fitting Repeat 3 # weights: 507 initial value 106.279884 final value 94.008696 converged Fitting Repeat 4 # weights: 507 initial value 127.686367 final value 93.714286 converged Fitting Repeat 5 # weights: 507 initial value 101.588784 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 98.850535 iter 10 value 94.054841 iter 20 value 93.807474 iter 30 value 91.574647 iter 40 value 86.635398 iter 50 value 81.781944 iter 60 value 80.615823 iter 70 value 80.311764 iter 80 value 80.277989 iter 90 value 80.169322 iter 100 value 80.145815 final value 80.145815 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 109.130407 iter 10 value 93.981598 iter 20 value 86.087032 iter 30 value 84.474563 iter 40 value 84.134853 iter 50 value 83.856031 iter 60 value 83.430302 iter 70 value 83.341804 iter 80 value 82.975621 iter 90 value 82.868333 final value 82.867551 converged Fitting Repeat 3 # weights: 103 initial value 105.930341 iter 10 value 89.984793 iter 20 value 84.715754 iter 30 value 83.073650 iter 40 value 82.755994 iter 50 value 82.573037 iter 60 value 82.559455 final value 82.559278 converged Fitting Repeat 4 # weights: 103 initial value 100.772071 iter 10 value 93.914163 iter 20 value 87.270935 iter 30 value 84.765951 iter 40 value 84.696777 iter 50 value 84.119931 iter 60 value 83.938365 iter 70 value 83.354169 iter 80 value 82.948724 iter 90 value 82.873761 iter 100 value 82.867551 final value 82.867551 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.772549 iter 10 value 94.005476 iter 20 value 92.133934 iter 30 value 86.129490 iter 40 value 84.817594 iter 50 value 82.382387 iter 60 value 80.465860 iter 70 value 80.291582 iter 80 value 80.202249 iter 90 value 80.130296 iter 100 value 79.978780 final value 79.978780 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.747928 iter 10 value 92.801701 iter 20 value 84.269010 iter 30 value 81.721224 iter 40 value 80.343635 iter 50 value 79.459979 iter 60 value 78.921474 iter 70 value 78.733500 iter 80 value 78.645109 iter 90 value 78.514478 iter 100 value 78.431527 final value 78.431527 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.944508 iter 10 value 94.048478 iter 20 value 89.877910 iter 30 value 84.326551 iter 40 value 80.387614 iter 50 value 78.788073 iter 60 value 78.509557 iter 70 value 78.075400 iter 80 value 77.969981 iter 90 value 77.959910 iter 100 value 77.957822 final value 77.957822 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.118414 iter 10 value 93.918046 iter 20 value 85.444309 iter 30 value 83.888712 iter 40 value 83.475915 iter 50 value 83.146482 iter 60 value 82.838783 iter 70 value 82.383530 iter 80 value 82.336843 iter 90 value 82.306513 iter 100 value 81.566451 final value 81.566451 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.911372 iter 10 value 94.075590 iter 20 value 88.558802 iter 30 value 86.691263 iter 40 value 85.989256 iter 50 value 85.393353 iter 60 value 85.070639 iter 70 value 82.489066 iter 80 value 81.063161 iter 90 value 80.168948 iter 100 value 80.067416 final value 80.067416 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.964343 iter 10 value 94.090625 iter 20 value 93.016083 iter 30 value 83.367418 iter 40 value 82.100492 iter 50 value 81.423806 iter 60 value 81.293943 iter 70 value 81.066877 iter 80 value 80.747119 iter 90 value 80.478453 iter 100 value 80.348142 final value 80.348142 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.391866 iter 10 value 94.455971 iter 20 value 93.979767 iter 30 value 92.641457 iter 40 value 92.000093 iter 50 value 91.235384 iter 60 value 84.000297 iter 70 value 81.039682 iter 80 value 79.617604 iter 90 value 79.032769 iter 100 value 78.639745 final value 78.639745 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 119.540428 iter 10 value 94.707765 iter 20 value 93.730246 iter 30 value 90.347200 iter 40 value 85.629398 iter 50 value 85.222389 iter 60 value 84.891911 iter 70 value 84.760954 iter 80 value 84.704025 iter 90 value 82.616636 iter 100 value 81.285472 final value 81.285472 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.287816 iter 10 value 91.215431 iter 20 value 86.986251 iter 30 value 85.681812 iter 40 value 85.114651 iter 50 value 83.745786 iter 60 value 82.341443 iter 70 value 81.622011 iter 80 value 80.617998 iter 90 value 80.114312 iter 100 value 79.735166 final value 79.735166 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.076754 iter 10 value 95.033313 iter 20 value 93.187601 iter 30 value 85.848531 iter 40 value 84.370127 iter 50 value 82.570587 iter 60 value 80.926808 iter 70 value 80.458271 iter 80 value 79.400756 iter 90 value 78.837436 iter 100 value 78.622249 final value 78.622249 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 124.615527 iter 10 value 93.874698 iter 20 value 88.207152 iter 30 value 86.336146 iter 40 value 85.786315 iter 50 value 85.166952 iter 60 value 85.061668 iter 70 value 84.896032 iter 80 value 83.929196 iter 90 value 81.135668 iter 100 value 80.828350 final value 80.828350 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.408149 final value 94.054376 converged Fitting Repeat 2 # weights: 103 initial value 101.513277 final value 94.054707 converged Fitting Repeat 3 # weights: 103 initial value 95.255633 final value 94.010446 converged Fitting Repeat 4 # weights: 103 initial value 95.418737 iter 10 value 94.054264 iter 20 value 94.052915 iter 30 value 93.762895 final value 93.762887 converged Fitting Repeat 5 # weights: 103 initial value 95.535823 final value 94.054502 converged Fitting Repeat 1 # weights: 305 initial value 98.653094 iter 10 value 94.013624 iter 20 value 93.603121 iter 30 value 87.613179 final value 87.613044 converged Fitting Repeat 2 # weights: 305 initial value 94.481737 iter 10 value 94.057113 iter 20 value 92.505348 iter 30 value 86.640055 iter 40 value 85.215425 iter 50 value 85.172249 iter 60 value 85.170359 iter 60 value 85.170358 iter 60 value 85.170358 final value 85.170358 converged Fitting Repeat 3 # weights: 305 initial value 101.607723 iter 10 value 94.014128 iter 20 value 94.005806 iter 30 value 93.764085 iter 40 value 84.191065 iter 50 value 83.398095 final value 83.396807 converged Fitting Repeat 4 # weights: 305 initial value 98.214786 iter 10 value 94.058126 iter 20 value 93.807689 iter 30 value 87.016281 iter 40 value 85.689779 iter 50 value 85.495103 iter 60 value 84.703142 iter 70 value 84.278610 final value 84.278539 converged Fitting Repeat 5 # weights: 305 initial value 114.235684 iter 10 value 85.271210 iter 20 value 85.189666 iter 30 value 85.187449 iter 40 value 84.567697 iter 50 value 84.289610 iter 60 value 84.287938 iter 70 value 84.254688 iter 80 value 81.621356 iter 90 value 81.183731 iter 100 value 80.320963 final value 80.320963 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.614744 iter 10 value 94.061129 iter 20 value 94.044936 iter 30 value 93.948301 iter 40 value 86.353554 iter 50 value 86.348147 iter 60 value 86.347412 iter 70 value 86.347044 iter 80 value 86.338534 iter 90 value 85.820348 iter 100 value 83.565337 final value 83.565337 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.629854 iter 10 value 94.061728 iter 20 value 94.054770 iter 30 value 92.879574 iter 40 value 84.576740 iter 50 value 82.846532 iter 60 value 78.682906 iter 70 value 78.249792 iter 80 value 77.496124 iter 90 value 76.915181 iter 100 value 76.592201 final value 76.592201 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 102.515378 iter 10 value 94.059784 iter 20 value 92.759588 iter 30 value 83.940555 iter 40 value 83.926279 iter 50 value 83.915261 iter 60 value 83.890539 iter 70 value 82.512504 iter 80 value 82.510961 iter 90 value 82.508847 iter 100 value 82.508585 final value 82.508585 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 95.124881 iter 10 value 94.016118 iter 20 value 93.792278 iter 30 value 86.645271 iter 40 value 84.801059 iter 50 value 83.913845 iter 60 value 83.912530 iter 70 value 83.516915 iter 80 value 82.719368 iter 90 value 80.123481 iter 100 value 78.689498 final value 78.689498 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.634736 iter 10 value 94.060357 iter 20 value 93.785352 iter 30 value 93.762861 iter 40 value 93.761247 final value 93.761237 converged Fitting Repeat 1 # weights: 305 initial value 132.543269 iter 10 value 117.902255 iter 20 value 117.896401 iter 30 value 117.517938 iter 40 value 117.514346 iter 50 value 117.463619 iter 60 value 117.457505 iter 60 value 117.457505 final value 117.457505 converged Fitting Repeat 2 # weights: 305 initial value 132.999979 iter 10 value 117.554326 iter 20 value 117.550010 iter 30 value 117.500576 iter 40 value 113.841703 iter 50 value 113.770036 iter 60 value 113.768630 final value 113.768584 converged Fitting Repeat 3 # weights: 305 initial value 121.128903 iter 10 value 117.891447 iter 20 value 107.050116 final value 106.777560 converged Fitting Repeat 4 # weights: 305 initial value 120.758114 iter 10 value 117.763512 iter 20 value 117.616447 iter 30 value 116.192404 iter 40 value 107.044734 iter 50 value 107.005293 iter 60 value 106.446100 iter 70 value 105.360110 iter 80 value 105.359311 final value 105.358313 converged Fitting Repeat 5 # weights: 305 initial value 135.126205 iter 10 value 117.575628 iter 20 value 117.572536 iter 30 value 117.571584 iter 40 value 117.570892 iter 50 value 117.570622 final value 117.570564 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Fri Jan 24 05:57:01 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 42.883 1.596 122.946
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.355 | 1.093 | 44.431 | |
FreqInteractors | 0.273 | 0.020 | 2.168 | |
calculateAAC | 0.042 | 0.008 | 0.050 | |
calculateAutocor | 0.474 | 0.068 | 11.555 | |
calculateCTDC | 0.080 | 0.006 | 0.086 | |
calculateCTDD | 0.632 | 0.017 | 0.649 | |
calculateCTDT | 0.234 | 0.009 | 0.242 | |
calculateCTriad | 0.405 | 0.034 | 0.439 | |
calculateDC | 0.129 | 0.015 | 0.144 | |
calculateF | 0.350 | 0.015 | 0.366 | |
calculateKSAAP | 0.141 | 0.015 | 0.156 | |
calculateQD_Sm | 1.939 | 0.170 | 2.109 | |
calculateTC | 2.351 | 0.234 | 2.585 | |
calculateTC_Sm | 0.283 | 0.019 | 0.302 | |
corr_plot | 32.732 | 0.872 | 34.997 | |
enrichfindP | 0.489 | 0.053 | 17.941 | |
enrichfind_hp | 0.069 | 0.015 | 1.121 | |
enrichplot | 0.415 | 0.006 | 1.684 | |
filter_missing_values | 0.002 | 0.000 | 0.002 | |
getFASTA | 0.066 | 0.011 | 4.201 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0.000 | 0.001 | 0.000 | |
impute_missing_data | 0.002 | 0.001 | 0.003 | |
plotPPI | 0.077 | 0.005 | 6.961 | |
pred_ensembel | 13.597 | 0.449 | 60.256 | |
var_imp | 32.914 | 0.660 | 34.381 | |